首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residual stress and strain in living tissues have been investigated from the viewpoint of mechanical optimality maintained by adaptive remodeling. In this study, the residual stresses in the cortical-cancellous bone complex of bovine coccygeal vertebrae were examined. Biaxial strain gages were bonded onto the cortical surface, so that the gage axes were aligned in the cephalocaudal and circumferential directions. Strains induced by removal of the end-plate and the cancellous bone were recorded sequentially. The results revealed the existence of compressive residual stress in the cortical bone and tensile residual stress in the cancellous bone in both the cephalocaudal and the circumferential direction. The observed strains were examined on the basis of the uniform stress hypothesis using a three-bar model for the cephalocaudal direction and a three-layered cylinder model for the circumferential direction. In this model study, the magnitude of effective stresses, which is defined as the macroscopic stress divided by the area fraction of bone material, was found not to differ significantly between cephalocaudal and circumferential directions, although they were evaluated using independent models. These results demonstrate that the uniform stress state of the cortical-cancellous bone structure is consistent with results obtained in the cutting experiment when the existence of residual stress is taken into account.  相似文献   

2.
The velocity of ultrasound waves through bone has been used widely as a non-invasive method for assessing bone quality. Accurate measurement of velocity depends on accurate assessment of the distance travelled by the sound wave. It has been argued that the sonic pathway is deflected around the marrow cavity and so does not follow a straight line through the bone; therefore, correction factors have been developed to account for the extra distance travelled. This hypothesis was examined in vitro using sections from the equine third metacarpal bone. Two 1 MHz transducers used with the transmitting transducer energized by a 600 V electrical spike generator produced a 0.1 μs pulse width and the received signal was recorded on a delayed time-base oscilloscope, from which the velocity was calculated. Two distinct peaks were apparent in the received signal, corresponding to a direct cortical transmission wave and a direct medullary transmission wave. This observation was confirmed quantitatively using models of the third metacarpal made from homogeneous materials that allow accurate determination of the transit times of each component of the signal. Perspex was used to mimic cortical bone, with water as the mimic for the contents of the medullary canal; these materials were chosen because they have transmission velocities similar to the materials they were mimicing. The results confirmed that the pathway went straight through the bone with a time lag in the medullary wave due to the slower transmission velocity of the marrow. To ensure that the cortical wave is always received, transducers larger than the medullary width should always be used.  相似文献   

3.
4.
The purpose of the present study was to clarify the differences in the alterations of cellular activities of osteoblasts and osteoclasts, mineralization, and bone mass in cortical and cancellous bones of young growing rats with mild calcium deficiency. Twenty female Sprague-Dawley rats, 6 weeks of age, were randomized by the stratified method into two groups with 10 rats in each group: 0.5% (normal) calcium diet group and 0.1% (low) calcium diet group. After 10 weeks of feeding, bone histomorphometric analysis was performed on cancellous bone of the proximal tibia as well as cortical bone of the tibial shaft. Calcium deficiency increased eroded surface (ES/bone surface [BS]) and the number of osteoclast (N.Oc/BS) with an increase in osteoblast surface (ObS/BS), but decreased bone formation rate (BFR/BS) in cancellous bone. However, cancellous bone volume was preserved, while cortical bone area was decreased as a result of decreased periosteal bone gain and enlargement of the marrow cavity. These results suggest that short-term mild calcium deficiency in young growing female rats increased bone resorption by increasing osteoclastic recruitment, and suppressed mineralization followed by increased osteoblastic recruitment in cancellous bone, but cancellous bone loss was counteracted through redistribution of calcium from cortical bone to cancellous bone.  相似文献   

5.
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.  相似文献   

6.
Revascularization, one of the major components of bone healing, was examined in an experimental model. The radioactive microsphere technique demonstrated that after 4 weeks beneath a musculocutaneous flap, isolated bone segments had significant blood flow, whereas bone beneath a cutaneous flap did not. The muscle flap bone had a blood flow approximately half that of normal control bone. The muscle of the musculocutaneous flap had a blood flow three times that of the skin of the cutaneous flap. The bipedicle cutaneous flap used was designed to have a healthy blood supply, and at 4 weeks it had a blood flow twice that of control skin. Despite this, there was essentially no demonstrable blood flow in the cutaneous flap bone segments at 4 weeks. Only 3 of 17 bone segments underneath cutaneous flaps showed medullary vascularization, whereas 10 of 11 muscle flap bones did. All bone segments underneath muscle flaps showed osteoblasts and osteoclasts at 4 weeks; neither were seen in the cutaneous bone segments. The process of revascularization occurred through an intact cortex and penetrated into the cancellous bone. Because the bone segments were surrounded by an impervious barrier except for one cortical surface, the cellular activity seen is attributed to revascularization by the overlying flap. In this model, a muscle flap was superior to a cutaneous flap in revascularizing isolated bone segments at 4 weeks. This was documented by blood flow measured by the radioactive microsphere technique and by bone histology.  相似文献   

7.
The association of a vascularized periosteal flap with a cancellous bone graft was studied on a group of 20 Wistar rats. Ten rats were sacrificed at 6 weeks and seven at 12 weeks (three died prematurely). The behavior of the cancellous bone graft buried in striated muscle and the osteogenic capacity of a simple vascularized periosteal flap also were observed on the same animals. Results of the study are as follows: In 14 of 17 animals, a vascularized periosteal flap wrapped around a cancellous bone graft resulted in new cortical bone formation with little resorption of the initial cancellous graft. A vascularized musculoperiosteal flap has produced a small amount of new compact bone only in 4 of 17 animals. A cancellous bone graft buried into well-vascularized muscle tissue was resorbed (15 cases) or necrotic (2 cases) at 12 weeks. In conclusion, the association of a vascularized periosteal flap and cancellous bone is a better means to produce compact bone than a vascularized periosteal flap alone or an isolated cancellous bone graft.  相似文献   

8.
It is well documented that intermittent PGE(2) treatment increases both trabecular and cortical bone mass. However, the effects of continuous PGE(2) administration remain undocumented. The aim of the study was to investigate the effects of continuous prostaglandin E(2) (PGE(2)) on different bone sites in skeletally mature rats. Six-month-old Sprague Dawley rats were treated with PGE(2) at 1 or 3 mg/kg/d continuously via infusion pump for 21 days. Two other groups of rats received PGE(2) at the same doses by intermittent (daily) subcutaneous injections and served as positive controls. Histomorphometry was performed on cancellous bone of the proximal tibial metaphysis and cortical bone of the tibial shaft. As expected, intermittent PGE(2) treatment increased both cancellous and cortical bone mass by stimulating bone formation at the cancellous, periosteal and endocortical bone surfaces. In contrast, continuous PGE(2) treatment decreased cancellous bone mass with bone resorption exceeding bone formation. In addition, continuous PGE(2) treatment increased endocortical and intracortical bone remodeling, inducing bone loss which was partially offset by stimulating periosteal expansion. We conclude that continuous PGE(2) treatment induces overall catabolic effects on both cancellous and cortical bone envelopes, which differs from intermittent PGE(2) treatment that is anabolic. Lastly, we speculate that superior bone mass may be achieved by co-treatment of continuous PGE(2) in combination with an anti-catabolic agent.  相似文献   

9.
Volume maintenance of inlay bone grafts in the craniofacial skeleton   总被引:3,自引:0,他引:3  
Although the clinical use of inlay bone grafts is widespread in craniofacial surgery, the dynamics of inlay bone grafting to the craniofacial skeleton have never been well characterized. Previous work demonstrated that volume maintenance of bone grafts in the onlay position is a consequence of their microarchitectural features, rather than their embryological origins. The purpose of this study was to investigate whether the properties determining the volume maintenance of bone grafts in the onlay position in the craniofacial skeleton could be extended to bone grafts in the inlay position. It was hypothesized that volume maintenance of an inlay bone graft could be better explained on the basis of the microarchitectural features of the graft (cortical versus cancellous composition), rather than its embryological origin (membranous versus endochondral), and that the primary determinant of bone graft behavior is the interaction between the microarchitectural features of the bone graft and the local mechanical environment in which the bone graft is placed. Cortical and cancellous bone grafts were harvested from the iliac crest (endochondral origin) of 25 New Zealand white rabbits, and cortical bone was harvested from the mandible (membranous origin) of each rabbit. Four 7-mm trephine holes were made in the cranium of each rabbit, posterior to the coronal suture. Each defect was filled with endochondral cortical bone, endochondral cancellous bone, or membranous cortical bone or was left as an ungrafted control specimen. Animals were killed at 3, 8, or 16 weeks. Crania were subjected to micro-computed tomographic and histological assessments. Micro-computed tomographic analysis demonstrated significant increases in actual bone volume from time 0 to the time of death for all types of grafts. Cortical bone demonstrated significant increases in space-occupying volume at all time points. By 16 weeks, no statistically significant difference in either the actual bone volume or the space-occupying volume according to graft type could be detected. There was no resorption of the inlay bone grafts; in fact, all bone types exhibited increased volume. Cancellous bone demonstrated the greatest capacity to increase actual bone volume. All bone graft types seemed to reach a steady-state bone volume, as if controlled by a local regulator. The regulator is likely the local mechanical environment in which the grafts were placed, as corroborated by the findings that the bone grafts seemed to recapitulate the characteristics of the bone in which they were placed, rather than maintaining their native characteristics.  相似文献   

10.
Osteoporosis is a progressive systemic skeletal condition characterized by low bone mass and microarchitectural deterioration, with a consequent increase in susceptibility to fracture. Hence, osteoporosis would be best diagnosed by in vivo measurements of bone strength. As this is not clinically feasible, our goal is to estimate bone strength through the assessment of elastic properties, which are highly correlated to strength. Previously established relations between morphological parameters (volume fraction and fabric) and elastic constants could be applied to estimate cancellous bone stiffness in vivo. However, these relations were determined for normal cancellous bone. Cancellous bone from osteoporotic patients may require different relations. In this study we set out to answer two questions. First, can the elastic properties of osteoporotic cancellous bone be estimated from morphological parameters? Second, do the relations between morphological parameters and elastic constants, determined for normal bone, apply to osteoporotic bone as well? To answer these questions we used cancellous bone cubes from femoral heads of patients with (n=26) and without (n=32) hip fractures. The elastic properties of the cubes were determined using micro-finite element analysis, assuming equal tissue moduli for all specimens. The morphological parameters were determined using microcomputed tomography. Our results showed that, for equal tissue properties, the elastic properties of cancellous bone from fracture patients could indeed be estimated from morphological parameters. The morphology-based relations used to estimate the elastic properties of cancellous bone are not different for women with or without fractures.  相似文献   

11.
The aims of the study are to develop a non-invasive animal model of circular motion exercise and to evaluate the effect of this type of exercise on bone turnover in young rats. The circular motion exercise simulates isometric exercise using an orbital shaker that oscillates at a frequency of 50 Hz and is capable of speeds from 0-400 rpm. A cage is fixed on top of the shaker and the animals are placed inside. When the shaker is turned on, the oscillatory movement should encourage the animals to hold on to the cage and use various muscle forces to stabilize themselves. Rats at 8 weeks of age were trained on the shaker for 6 weeks and static and dynamic histomorphometric analyses were performed for the proximal tibial metaphysis and the tibial shaft. The exercise resulted in no significant effect on animal body weight, gastrocnemius muscle weight and femoral weight. Although the bone formation rate of cancellous and cortical periosteum was increased by the exercise, trabecular bone volume was decreased. The exercise increased periosteal and marrow perimeters and the cross-sectional diameter of cortical bone from medial to lateral without a significant increase in the cortical bone area. These results suggest that circular motion exercise under force without movement or additional weight loading will cause bone-modeling drift with an increase in bone turnover to reconstruct bone shape in adaptation to the demand in strength. Since there is no additional weight loading during circular motion exercise, the net mass of bone is not increased. The bone mass lost in trabecular bone could possibly be due to a re-distribution of mineral to the cortical bone.  相似文献   

12.
Q. Grimal  P. Laugier 《IRBM》2019,40(1):16-24
The development of quantitative ultrasound (QUS) technologies to measure bone is motivated by the need to overcome the limitations of X-ray based methods, measuring bone mineral density (BMD) which is the gold standard to date for the diagnosis of osteoporosis. Because it uses mechanical waves, the ultrasound modality is a particularly relevant means to probe bone mechanical resistance. The vast majority of QUS technologies commercialized to date merely aim to provide surrogate markers for BMD. During the past decade, innovative QUS approaches have emerged to assess bone beyond BMD. This may be achieved by (1) specifically assessing the cortical bone compartment, independently of trabecular bone, and (2) providing intrinsic bone properties such as cortical bone thickness and material properties. One specific motivation is to estimate intracortical porosity, a quantity reflected in material properties. This article aims at an overview of recent QUS developments to measure cortical bone properties. We also draw a picture of the current knowledge on bone material properties of interest for bone QUS. We discuss the potential of ultrasound to provide novel biomarkers of bone health through the assessment of material properties.  相似文献   

13.
Prior to initiating a clinical trial in a post-menopausal osteoporosis study, it is reasonable to recommence the evaluation of treatment in the 9-month-old ovariectomized female rat. A female rat of this age has reached peak bone mass and can be manipulated to simulate clinical findings of post-menopausal osteoporosis. Ample time exists for experimental protocols that either prevent estrogen depletion osteopenia or restore bone loss after estrogen depletion. More time can be saved by acceleration of the development of the osteopenia by combining ovariectomized (OVX) plus immobilization (IM) models. Methods like serum biochemistry, histomorphometry and densitometry used in humans are applicable in rats. Like most animal models of osteopenia, the rat develops no fragility fractures, but mechanical testing of rat bones substitutes as a predictor of bone fragility. Recent studies have shown that the prevailing activity in cancellous and cortical bone of the sampling sites in rats is remodeling. The problems of dealing with a growing skeleton, the site specificity of the OVX and IM models, the lack of trabecular and Haversian remodeling and the slow developing cortical bone loss have been and can be overcome by adding beginning and pre-treatment controls and muscle mass measurements in all experimental designs, selecting cancellous bone sampling sites that are remodeling, concentrating the analysis of cortical bone loss to the peri-medullary bone and combining OVX and IM in a model to accelerate the development of both cancellous and cortical bone osteopenia. Not to be forgotten is the distal tibia site, an adult bone site with growth plate closure at 3 months and low trabecular bone turnover and architecture similar to human spongiosa. This site would be most challenging to the action of bone anabolic agents. Data about estrogen-deplete mice are encouraging, but the ovariectomized rat model suggests that developing an ovariectomized mouse model as an alternative is not urgent. Nevertheless, the mouse model has a place in drug development and skeletal research. In dealing with drug development, it could be a useful model because it is a much smaller animal requiring fewer drugs for screening. In skeletal research mice are useful in revealing genetic markers for peak bone mass and gene manipulations that affect bone mass, structure and strength. When the exciting mouse glucocorticoid-induced bone loss model of Weinstein and Manolagas is confirmed by others, it could be a significant breakthrough for that area of research. Lastly, we find that the information generated from skeletal studies of nonhuman primates has been most disappointing and recommend that these expensive skeletal studies be curtailed unless it is required by a regulatory agency for safety studies.  相似文献   

14.
The purpose of the present study was to compare the effects of alendronate and alfacalcidol on cancellous and cortical bone mass and bone mechanical properties in ovariectomized rats. Twenty-six female Sprague-Dawley rats, 7 months of age, were randomized by the stratified weight method into four groups: the sham-operated control (Sham) group and the three ovariectomy (OVX) groups, namely, OVX + vehicle, OVX + alendronate (2.5 mg/kg, p.o., daily), and OVX + alfacalcidol (0.5 mug/kg, p.o., daily). At the end of the 8-week experimental period, bone histomorphometric analyses of cancellous bone at the proximal tibial metaphysis and cortical bone at the tibial diaphysis were performed, and the mechanical properties of the femoral distal metaphysis and femoral diaphysis were evaluated. OVX decreased cancellous bone volume per total tissue volume (BV/TV), and the maximum load of the femoral distal metaphysis, as a result of increases in serum osteocalcin (OC) levels, and also the number of osteoclasts (N.Oc), osteoclast surface (OcS) and bone formation rate (BFR) per bone surface (BS), and BFR/BV, without any effect on cortical area (Ct Ar), or maximum load of the femoral diaphysis. Alendronate prevented this decrease in cancellous BV/TV by suppressing increases in N.Oc/BS, OcS/BS, BFR/BS, and BFR/BV, without any apparent effect on Ct Ar, or maximum load of the femoral distal metaphysis and femoral diaphysis. On the other hand, alfacalcidol increased cancellous BV/TV, Ct Ar, and the maximum load of the femoral distal metaphysis and femoral diaphysis, by mildly decreasing trabecular BFR/BV, maintaining trabecular mineral apposition rate and osteoblast surface per BS, increasing periosteal and endocortical BFR/BS, and preventing an increase in endocortical eroded surface per BS. The present study clearly showed the differential skeletal effects of alendronate and alfacalcidol in ovariectomized rats. Alendronate prevented OVX-induced cancellous bone loss by suppressing bone turnover, while alfacalcidol improved cancellous and cortical bone mass and bone strength by suppressing bone resorption and maintaining or even increasing bone formation.  相似文献   

15.
There are substantial changes in maternal skeletal dynamics during pregnancy, lactation, and after lactation. The purpose of this study was to correlate changes in cortical and cancellous bone mass, structure, and dynamics with mechanical properties during and after the first reproductive cycle in rats. Rats were mated and groups were taken at parturition, end of lactation and 8 wk after weaning, and were compared with age-matched, nulliparous controls. Measurements were taken on femoral cortical bone and lumbar vertebral body cancellous bone. At the end of pregnancy, there was an increase in cortical periosteal bone formation and an increase in cortical volume, but a suppression of turnover in cancellous bone with no change in cancellous or cortical mechanical properties. Lactation was associated with a decrease in cortical and cancellous bone strength with a decrease in bone volume, but an increase in turnover on cancellous and endocortical surfaces. After lactation, there was a partial or full restoration of mechanical properties. This study demonstrates substantial changes in bone mechanics that correlate with changes in bone structure and dynamics during the first reproductive cycle in rats. The greatest changes were observed during the lactation period with partial or full recovery in the postlactational period.  相似文献   

16.
To restore femoral intramedullary bone stock loss in revision surgery of failed total hip arthroplasties, impacted morselized cancellous allograft is recommended. This study investigated the mechanical properties of both impacted cortical (group A) and cancellous (group B) morselized bone graft for reconstruction of femoral bones. Ten matched pairs of fresh frozen human femora were prepared by over-reaming to create a smooth-walled cortical shell. Each pair had one cortical and one cancellous impacted morselized allograft and cement. Stem subsidence was evaluated by a cyclic axial load, which was applied by a servohydraulic test. The stem subsidence was measured for initial subsidence (subsidence at the first 1000 cycles), the total axial subsidence (subsidence at the end of cycles under load) and the final axial subsidence (subsidence after the unloading phase). Torque test was measured by torsional loads through the prosthetic femoral heads. Total axial subsidence was significantly higher in group B (mean: 1.32+/-0.32 mm) compared to group A (mean: 0.94+/-0.26 mm) (P<0.01).There was no significant difference between the two groups in terms of initial subsidence (P=0.09) and final axial subsidence.The mean maximum torque before failure was 39.5+/-22.2 N-m for the cortical morselized allograft and 32.5+/-18.1N-m for cancellous.We concluded that impacted morselized cortical bone graft used for reconstruction of contained femoral bone loss in revision hip arthroplasty, may reduce the stem subsidence. Further animal experimentation for mechanical and histological evaluation of in vivo application is warranted.  相似文献   

17.
Prediction of femoral head collapse in osteonecrosis   总被引:6,自引:0,他引:6  
The femoral head deteriorates in osteonecrosis. As a consequence of that, the cortical shell of the femoral head can buckle into the cancellous bone supporting it. In order to examine the buckling scenario we performed numerical analysis of a realistic femoral head model. The analysis included a solution of the hip contact problem, which provided the contact pressure distribution, and subsequent buckling simulation based on the given contact pressure. The contact problem was solved iteratively by approximating the cartilage by a discrete set of unilateral linear springs. The buckling calculations were based on a finite element mesh with brick elements for the cancellous bone and shell elements for the cortical shell. Results of 144 simulations for a variety of geometrical, material, and loading parameters strengthen the buckling scenario. They, particularly, show that the normal cancellous bone serves as a strong supporting foundation for the cortical shell and prevents it from buckling. However, under the development of osteonecrosis the deteriorating cancellous bone is unable to prevent the cortical shell from buckling and the critical pressure decreases with the decreasing Young modulus of the cancellous bone. The local buckling of the cortical shell seems to be the driving force of the progressive fracturing of the femoral head leading to its entire collapse. The buckling analysis provides an additional criterion of the femoral head collapse, the critical contact pressure. The buckling scenario also suggests a new argument in speculating on the femoral head reinforcement. If the entire collapse of the femoral head starts with the buckling of the cortical shell then it is reasonable to place the reinforcement as close to the cortical shell as possible.  相似文献   

18.
Loss of mechanical stress or unloading causes disuse osteoporosis that leads to fractures and deteriorates body function and affects mortality rate in aged population. This bone loss is due to reduction in osteoblastic bone formation and increase in osteoclastic bone resorption. MuRF1 is a muscle RING finger protein which is involved in muscle wasting and its expression is enhanced in the muscle of mice subjected to disuse condition such as hind limb unloading (HU). However, whether MuRF1 is involved in bone loss due to unloading is not known. We therefore examined the effects of MuRF1 deficiency on unloading-induced bone loss. We conducted hind limb unloading of MuRF1 KO mice and wild-type control mice. Unloading induced about 60% reduction in cancellous bone volume (BV/TV) in WT mice. In contrast, MuRF1 deficiency suppressed unloading-induced cancellous bone loss. The cortical bone mass was also reduced by unloading in WT mice. In contrast, MuRF1 deficiency suppressed this reduction in cortical bone mass. To understand whether the effects of MuRF1 deficiency suppress bone loss is on the side of bone formation or bone resorption, histomorphometry was conducted. Unloading reduced bone osteoblastic formation rate (BFR) in WT. In contrast, MuRF1 deficiency suppressed this reduction. Regarding bone resorption, unloading increased osteoclast number in WT. In contrast, MURF1 deficiency suppressed this osteoclast increase. These data indicated that the ring finger protein, MURF1 is involved in disuse-induced bone loss in both of the two major bone remodeling activities, osteoblastic bone formation and osteoclastic bone resorption.  相似文献   

19.
The goal of this study was to determine, through a longitudinal follow-up, whether sex influences bone adaptation during simulated weightlessness. Twelve-week-old male and female Wistar rats were hindlimb unweighted for 2 wk, and the time course of bone alteration was monitored in vivo by means of densitometry and unbiased three-dimensional quantitative microcomputed tomography at 7 and 14 days. Compared with male rats, female rats had twice more cancellous bone volume at the proximal tibia at baseline, and this bone volume continued to increase, whereas in males it stabilized. Conversely, cortical area was greater in males than in females, and in both sexes cortical bone was still expanding. Hindlimb unloading resulted in larger reductions in males than in females in both cortical and cancellous compartments. In females, trabecular thickness and number decreased mildly, whereas in males trabecular number was dramatically reduced. In both sexes, the trabecular network became less connected and more rod-like shaped. Bone cellular activities evaluated by histomorphometry showed decreased bone formation rate in both sexes and increased resorption activity only in males. In conclusion, in female rats unloaded-related cancellous alterations reversed the growing process, whereas in males, which show lower growth process, it induced an accentuation of age-related cancellous bone changes for most of the parameters.  相似文献   

20.
Strain-induced adaption of bone has been well-studied in an axial loading model of the mouse tibia. However, most outcomes of these studies are restricted to changes in bone architecture and do not explore the mechanical implications of those changes. Herein, we studied both the mechanical and morphological adaptions of bone to three strain levels using a targeted tibial loading mouse model. We hypothesized that loading would increase bone architecture and improve cortical mechanical properties in a dose-dependent fashion. The right tibiae of female C57BL/6 mice (8 week old) were compressively loaded for 2 weeks to a maximum compressive force of 8.8N, 10.6N, or 12.4N (generating periosteal strains on the anteromedial region of the mid-diaphysis of 1700 με, 2050 με, or 2400 με as determined by a strain calibration), while the left limb served as an non-loaded control. Following loading, ex vivo analyses of bone architecture and cortical mechanical integrity were assessed by micro-computed tomography and 4-point bending. Results indicated that loading improved bone architecture in a dose-dependent manner and improved mechanical outcomes at 2050 με. Loading to 2050 με resulted in a strong and compelling formation response in both cortical and cancellous regions. In addition, both structural and tissue level strength and energy dissipation were positively impacted in the diaphysis. Loading to the highest strain level also resulted in rapid and robust formation of bone in both cortical and cancellous regions. However, these improvements came at the cost of a woven bone response in half of the animals. Loading to the lowest strain level had little effect on bone architecture and failed to impact structural- or tissue-level mechanical properties. Potential systemic effects were identified for trabecular bone volume fraction, and in the pre-yield region of the force-displacement and stress-strain curves. Future studies will focus on a moderate load level which was largely beneficial in terms of cortical/cancellous structure and cortical mechanical function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号