首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The components and pathways that regulate programmed cell death (PCD) in plants remain poorly understood. Here we describe the impact of drug-induced endoplasmic reticulum (ER) stress on Arabidopsis seedlings and present evidence for the role of Arabidopsis BAX inhibitor-1 (AtBI1) as a modulator of ER stress-mediated PCD. We found that treatment of Arabidopsis seedlings with tunicamycin (TM), an inhibitor of N-linked glycosylation and an inducer of ER stress by triggering accumulation of unfolded proteins in the ER, results in strong inhibition of root growth and loss of survival accompanied by typical hallmarks of PCD such as accumulation of H(2)O(2), chromatin condensation, and oligonucleosomal fragmentation of nuclear DNA. These phenotypes are alleviated by co-treatment with either of two different chemical chaperones, sodium 4-phenylbutyrate and tauroursodeoxycholic acid, both with chaperone properties that can reduce the load of misfolded protein in the ER. Expression of AtBI1 mRNA and its promoter activity are increased dramatically prior to initiation of TM-induced PCD. Compared with wild-type plants, two AtBI1 mutants (atbi1-1 and atbi1-2) exhibit hypersensitivity to TM with accelerated PCD progression. Conversely, overexpressing AtBI1 markedly reduces the sensitivity of Arabidopsis seedlings to TM. However, alterations in AtBI1 gene expression levels do not cause a significant effect on the expression patterns of typical ER stress-inducible genes (AtBip2, AtPDI, AtCRT1, and AtCNX1). We propose that AtBI1 plays a pivotal role as a highly conserved survival factor during ER stress that acts in parallel to the unfolded protein response pathway.  相似文献   

2.
Programmed cell death (PCD) is a genetically controlled and conserved process in eukaryotes during development as well as in response to pathogens and other stresses. BAX inhibitor-1 (BI-1) has been implicated as an anti-PCD factor which is highly conserved in plants. Sequence of putative cucumber BI-1 protein exhibited 77.7 % identity and 91.2 % positive value with the homologue Blast BI-1 protein of Arabidopsis thaliana (AtBI-1). This highly homologous protein to the AtBI-1 protein was named CsBI-1. This protein contains an open reading frame (ORF) of 250 amino acids with a BAX inhibitor domain and five transmembrane regions conserved among members of the BI-1 family. Primers designed by the cDNA of CsBI-1gene were used for further sequencing. Cell death in cold-stored cucumber developed concomitantly with increased expression of the CsBI-1 gene and reached maximum at day 6. However, cell death accelerated significantly after 9 d when sharp decrease of the CsBI-1 expression occurred. After warming to 20 °C, expression of the CsBI-1 gene was the highest at day 3, decreased afterwards, and the lowest expression was detected at day 9 when PCD obviously appeared. The overall results indicate that CsBI-1 is cucumber homologue of Arabidopsis thaliana AtBI-1 gene. CsBI-1 is a conserved cell death suppressor induced by cold stress and a negative regulator of PCD.  相似文献   

3.
BAX inhibitor-1 (BI-1) is a conserved cell death regulator protein that inhibits mammalian BAX-induced cell death in yeast, animals and plants. Additionally, HvBI-1 suppresses defense responses and resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) when over-expressed in single epidermal cells of barley. To test the potential of ectopic expression of BI-1 to influence fungal interactions with crop plants, we produced stable transgenic barley plants expressing a green fluorescing protein (GFP) fusion of HvBI-1 under control of the cauliflower mosaic virus 35S promoter. GFP-HvBI-1 plants were fertile and did not display obvious developmental alterations when compared to wild type parents. GFP-HvBI-1 plants were more resistant to single cell death induced by ballistic delivery of a mammalian proapototic BAX expression construct and more susceptible to biotrophic Bgh. Microscopic observation of the interaction phenotype revealed that enhanced susceptibility, i.e. a higher degree of successful establishment of haustoria in epidermal cells, was associated with a reduced frequency of hypersensitive cell death reactions. In contrast, young seedlings of GFP-HvBI-1 barley were more resistant to Fusarium graminearum than wild type or azygous controls. Hence the effect of GFP-HvBI-1 on the outcome of a particular plant–fungus interaction appeared dependent on the lifestyle of the pathogen. V. Babaeizad and J. Imani contributed equally to this study.  相似文献   

4.
The aim of the present study was to investigate the possible role of BAX and BI-1 genes in chilling injury of cucumber fruit. BAX and BI-1 gene expressions were assayed under 2 ± 1 °C. Meanwhile, cell death, cellular integrity, specific chromatin fragmentation and nucleus morphology in cucumber (Cucumis sativus L. cv. Zhexiu-1) fruits were determined. Results indicated that BAX and BI-1 genes were activated by low temperature and the expression level of the BAX was much higher than BI-1. At the same time, electrolyte leakage and cell death were increased coupled with nuclear envelope disassembly and DNA fragmentation during the occurrence of chilling injury. In addition, characteristic features of programmed cell death were induced as well as the initiation of chilling injury. The interaction of BAX and BI-1 might predetermine the cell life or death in response to cold stimulus.  相似文献   

5.
6.
Activation of the cysteine protease Caspase-1 is a key event in the innate immune response to infections. Synthesized as a proprotein, Caspase-1 undergoes autoproteolysis within multiprotein complexes called inflammasomes. Activated Caspase-1 is required for proteolytic processing and for release of the cytokines interleukin-1β and interleukin-18, and it can also cause rapid macrophage cell death. We show that macrophage cell death and cytokine maturation in response to infection with diverse bacterial pathogens can be separated genetically and that two distinct inflammasome complexes mediate these events. Inflammasomes containing the signaling adaptor Asc form a single large "focus" in which Caspase-1 undergoes autoproteolysis and processes IL-1β/IL-18. In contrast, Asc-independent inflammasomes activate Caspase-1 without autoproteolysis and do not form any large structures in the cytosol. Caspase-1 mutants unable to undergo autoproteolysis promoted rapid cell death, but processed IL-1β/18 inefficiently. Our results suggest the formation of spatially and functionally distinct inflammasomes complexes in response to bacterial pathogens.  相似文献   

7.
Candida albicans is a commensal organism at several sites and is a versatile, opportunistic pathogen. The underlying factors of pathogen and host associated with commensalism and pathogenicity in C. albicans are complex and their importance is largely unknown. We aimed to study the responses of oral epithelial (OEM) and vaginal epithelial models (VEM) to infection by oral and vaginal C. albicans strains to obtain evidence of inter-strain differences in pathogenicity and of site-specificity. Following inoculation of models, proinflammatory cytokines IL-1α, IL-1β, IL-6, IL-8 and prostaglandin E2 (PGE2) release were monitored and histological staining undertaken. Striking differences in strain behaviour and epithelial responses were observed. IL-1α, IL-1β and IL-8 release were significantly increased from the OEM in response to denture stomatitis strain NCYC 1467. Increased IL-8 release also followed infection of the OEM with both vaginal strains. Overall the VEM was relatively unresponsive to infection with either oral or vaginal strains under these conditions. Adherence and hyphal development were observed for all strains on both models although extensive, uniform tissue penetration was seen only with stomatitis strain NCYC 1467 on the OEM. Candidal strains were assayed for phospholipase (PL) and secreted aspartyl proteinase (SAP) activities where phospholipase (PL) activity was highest for strain NCYC 1467 although highest SAP activity was observed for vaginal strain NCPF 8112 in this assay. This is the first study to concurrently investigate cytokine production from oral and epithelial models using candidal strains originating from these respective mucosal sites from healthy and disease states. These data demonstrate significant differences in inflammatory responses of host epithelia to individual C. albicans strains.  相似文献   

8.
Among a variety of phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells. Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death. The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability. The presence of cannabinoid receptors, transient receptor potential vanilloid 1 (TRPV1), and endocannabinoid-metabolizing enzymes were determined by qRT-PCR and Western blot. We also examined the effects and the underlying mechanisms induced by eCBs and phytocannabinoids in endometrial cancer cell viability. Besides TRPV1, both EC cell lines express all the constituents of the endocannabinoid system. We observed that at concentrations higher than 5 μM, eCBs and CBD induced a significant reduction in cell viability in both Ishikawa and Hec50co cells, whereas THC did not cause any effect. In Ishikawa cells, contrary to Hec50co, treatment with AEA and CBD resulted in an increase in the levels of activated caspase ?3/?7, in cleaved PARP, and in reactive oxygen species generation, confirming that the reduction in cell viability observed in the MTT assay was caused by the activation of the apoptotic pathway. Finally, these effects were dependent on TRPV1 activation and intracellular calcium levels. These data indicate that cannabinoids modulate endometrial cancer cell death. Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma. Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.  相似文献   

9.
Programmed cell death (PCD) is a common process in eukaryotes during development and in response to pathogens and stress signals. Bax inihibitor-1 (BI-1) is proposed to be a cell death suppressor that is conserved in both animals and plants, but the physiological importance of BI-1 and the impact of its loss of function in plants are still unclear. In this study, we identified and characterized two independent Arabidopsis mutants with a T-DNA insertion in the AtBI1 gene. The phenotype of atbi1-1 and atbi1-2, with a C-terminal missense mutation and a gene knockout, respectively, was indistinguishable from wild-type plants under normal growth conditions. However, these two mutants exhibit accelerated progression of cell death upon infiltration of leaf tissues with a PCD-inducing fungal toxin fumonisin B1 (FB1) and increased sensitivity to heat shock-induced cell death. Under these conditions, expression of AtBI1 mRNA was up-regulated in wild-type leaves prior to the activation of cell death, suggesting that increase of AtBI1 expression is important for basal suppression of cell death progression. Over-expression of AtBI1 transgene in the two homozygous mutant backgrounds rescued the accelerated cell death phenotypes. Together, our results provide direct genetic evidence for a role of BI-1 as an attenuator for cell death progression triggered by both biotic and abiotic types of cell death signals in Arabidopsis.  相似文献   

10.
Evidence is presented that mitochondria are implicated in the previously described programmed cell death (PCD) process induced by acetic acid in Saccharomyces cerevisiae. In yeast cells undergoing a PCD process induced by acetic acid, translocation of cytochrome c (CytC) to the cytosol and reactive oxygen species production, two events known to be proapoptotic in mammals, were observed. Associated with these events, reduction in oxygen consumption and in mitochondrial membrane potential was found. Enzymatic assays showed that the activity of complex bc(1) was normal, whereas that of cytochrome c oxidase (COX) was strongly decreased. This decrease is in accordance with the observed reduction in the amounts of COX II subunit and of cytochromes a+a(3). The acetic acid-induced PCD process was found to be independent of oxidative phosphorylation because it was not inhibited by oligomycin treatment. The inability of S. cerevisiae mutant strains (lacking mitochondrial DNA, heme lyase, or ATPase) to undergo acetic acid-induced PCD and in the ATPase mutant (knockout in ATP10) the absence of CytC release provides further evidence that the process is mediated by a mitochondria-dependent apoptotic pathway. The understanding of the involvement of a mitochondria-dependent apoptotic pathway in S. cerevisiae PCD process will be most useful in the further elucidation of an ancestral pathway common to PCD in metazoans.  相似文献   

11.
12.

Background

Exacerbations of Chronic obstructive pulmonary disease (COPD) are an important cause of the morbidity and mortality associated with the disease. Strategies to reduce exacerbation frequency are thus urgently required and depend on an understanding of the inflammatory milieu associated with exacerbation episodes. Bacterial colonisation has been shown to be related to the degree of airflow obstruction and increased exacerbation frequency. The aim of this study was to asses the kinetics of cytokine release from COPD parenchymal explants using an ex vivo model of lipopolysaccharide (LPS) induced acute inflammation.

Methods

Lung tissue from 24 patients classified by the GOLD guidelines (7F/17M, age 67.9 ± 2.0 yrs, FEV1 76.3 ± 3.5% of predicted) and 13 subjects with normal lung function (8F,5M, age 55.6 ± 4.1 yrs, FEV1 98.8 ± 4.1% of predicted) was stimulated with 100 ng/ml LPS alone or in combination with either neutralising TNFα or IL-10 antibodies and supernatant collected at 1,2,4,6,24, and 48 hr time points and analysed for IL-1β, IL-5, IL-6, CXCL8, IL-10 and TNFα using ELISA. Following culture, explants were embedded in glycol methacrylate and immunohistochemical staining was conducted to determine the cellular source of TNFα, and numbers of macrophages, neutrophils and mast cells.

Results

In our study TNFα was the initial and predictive cytokine released followed by IL-6, CXCL8 and IL-10 in the cytokine cascade following LPS exposure. The cytokine cascade was inhibited by the neutralisation of the TNFα released in response to LPS and augmented by the neutralisation of the anti-inflammatory cytokine IL-10. Immunohistochemical analysis indicated that TNFα was predominantly expressed in macrophages and mast cells. When patients were stratified by GOLD status, GOLD I (n = 11) and II (n = 13) individuals had an exaggerated TNFα responses but lacked a robust IL-10 response compared to patients with normal lung function (n = 13).

Conclusion

We report on a reliable ex vitro model for the investigation of acute lung inflammation and its resolution using lung parenchymal explants from COPD patients. We propose that differences in the production of both TNFα and IL-10 in COPD lung tissue following exposure to bacterial LPS may have important biological implications for both episodes of exacerbation, disease progression and amelioration.  相似文献   

13.
Inspiratory muscle weakness in patients with COPD is of major clinical relevance. For instance, maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm shortening. However, more recently, invasive evaluation of diaphragm contractile function, structure, and biochemistry demonstrated that cellular and molecular alterations occur, of which several can be considered pathologic of nature. Whereas the fiber type shift towards oxidative type I fibers in COPD diaphragm is regarded beneficial, rendering the overloaded diaphragm more resistant to fatigue, the reduction of diaphragm fiber force generation in vitro likely contributes to diaphragm weakness. The reduced diaphragm force generation at single fiber level is associated with loss of myosin content in these fibers. Moreover, the diaphragm in COPD is exposed to oxidative stress and sarcomeric injury. This review postulates that the oxidative stress and sarcomeric injury activate proteolytic machinery, leading to contractile protein wasting and, consequently, loss of force generating capacity of diaphragm fibers in patients with COPD. Interestingly, several of these presumed pathologic alterations are already present early in the course of the disease (GOLD I/II), although these patients appear not limited in their daily life activities. Treatment of diaphragm dysfunction in COPD is complex since its etiology is unclear, but recent findings indicate the ubiquitin-proteasome pathway as a prime target to attenuate diaphragm wasting in COPD.  相似文献   

14.
Caspase-like protease involvement in the control of plant cell death   总被引:17,自引:0,他引:17  
Cell death as a highly regulated process has now been recognized to be an important, if not essential, pathway that is ubiquitous in all multicellular eukaryotes. In addition to playing key roles in the morphogenesis and sculpting of the organs to give rise to highly specialized forms and shapes, cell death also participates in the programmed creation of specialized cell types for essential functions such as the selection of B cells in the immune system of mammals and the formation of tracheids in the xylem of vascular plants. Studies of apoptosis, the most well-characterized form of animal programmed cell death, have culminated in the identification of a central tripartite death switch the enzymatic component of which is a conserved family of cysteine proteases called caspases. Studies in invertebrates and other animal models suggest that caspases are conserved regulators of apoptotic cell death in all metazoans. In plant systems, the identities of the main executioners that orchestrate cell death remain elusive. Recent evidence from inhibitor studies and biochemical approaches suggests that caspase-like proteases may also be involved in cell death control in higher plants. Furthermore, the mitochondrion and reactive oxygen species may well constitute a common pathway for cell death activation in both animal and plant cells. Cloning of plant caspase-like proteases and elucidation of the mechanisms through which mitochondria may regulate cell death in both systems should shed light on the evolution of cell death control in eukaryotes and may help to identify essential components that are highly conserved in eukaryotes.  相似文献   

15.
Overexpression of plant Bax Inhibitor-1 (BI-1) was able to suppress Bax-mediated cell death in yeast and Arabidopsis. Here, we demonstrate that reactive oxygen species production induced by the ectopic expression of Bax was insensitive to the coexpression of AtBI-1. Similarly, H2O2- or salicylic acid-mediated cell death also was suppressed in tobacco BY-2 cells overexpressing AtBI-1. To define the functional domain of AtBI-1 as a cell death suppressor, a truncated series of the AtBI-1 protein was analyzed in yeast possessing a galactose-inducible mammalian Bax. The results showed that DeltaC-AtBI-1 (with the C-terminal 14 amino acids deleted) lost the ability to sustain cell growth. Furthermore, a mutant protein in which the C-terminal seven amino acid residues of AtBI-1 were replaced with others lacking a coiled-coil structure failed to inhibit cell death, suggesting that the C-terminal region is essential for the inhibition of cell death. We also noted that the C-terminal hydrophilic region was interchangeable between animal and plant Bax inhibitors.  相似文献   

16.
17.
Porphyromonas gingivalis is considered the major pathogen of periodontal disease, which leads to chronic inflammation in oral tissues. P. gingivalis-produced lipopolysaccharide (LPS) is a key factor in the development of periodontitis. It is established that surfactin produced by Bacillus subtilis confers anti-inflammatory properties. However, the underlying mechanisms responsible for surfactin-induced anti-inflammatory actions in the context of periodontitis are poorly understood. In this study, we investigated whether surfactin affected P. gingivalis LPS-induced pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-12, and determined that it significantly inhibited their production. Surfactin-mediated inhibition was mainly due to blocked activation of P. gingivalis LPS-triggered nuclear factor-κB. We also examined whether the regulatory effect of surfactin on P. gingivalis LPS-stimulated human THP-1 macrophages was mediated by the induction of heme oxygenase-1 (HO-1) signals, and determined that surfactin also induced HO-1 mRNA and protein expression via activation of Nrf-2. Additionally, we found that small interfering RNA-mediated knock-down of Nrf-2 significantly inhibited surfactin-induced HO-1 expression. Furthermore, inhibition of phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) significantly decreased surfactin-induced HO-1 expression, which is consistent with the suggestion that surfactin-induced HO-1 expression occurs via PI3K/Akt, ERK, and Nrf-2. Treatment with a selective inhibitor of HO-1 reversed the surfactin-mediated inhibition of pro-inflammatory cytokines, suggesting that surfactin induces anti-inflammatory effects by activating Nrf-2-mediated HO-1 induction via PI3K/Akt and ERK signaling. Collectively, these observations support the potential of surfactin as a candidate in strategies to prevent caries, periodontitis, or other inflammatory diseases.  相似文献   

18.
19.
 A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characteristic features of apoptosis in animal cells, such as typical changes in nuclear morphology, the fragmentation of the nucleus and DNA fragmentation. In search of processes involved in plant apoptotic cell death, specific enzyme inhibitors were tested for cell-death-inhibiting activity. Our results showed that proteolysis plays a crucial role in apoptosis in plants. Furthermore, caspase-specific peptide inhibitors were found to be potent inhibitors of the chemical-induced cell death in tomato cells, indicating that, as in animal systems, caspase-like proteases are involved in the apoptotic cell death pathway in plants. Received: 5 August 1999 / Accepted: 14 March 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号