首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we found that infection with flaviviruses, such as Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2), leads to interferon-beta (IFN-beta) gene expression in a virus-replication- and de novo protein-synthesis-dependent manner. NF-kappaB activation is essential for IFN-beta induction in JEV- and DEN-2-infected cells. However, these two viruses seem to preferentially target different members of the interferon regulatory factor (IRF) family. The activation of constitutively expressed IRF-3, characterized by slower gel mobility, dimer formation, and nuclear translocation, is more evident in JEV-infected cells. Other members of the IRF family, such as IRF-1 and IRF-7 are also induced by DEN-2, but not by JEV infection. The upstream molecules responsible for IRF-3 and NF-kappaB activation were further studied. Evidently, a cellular RNA helicase, retinoic acid-inducible gene I (RIG-I), and a cellular kinase, phosphatidylinositol-3 kinase (PI3K), are required for flavivirus-induced IRF-3 and NF-kappaB activation, respectively. Therefore, we suggest that JEV and DEN-2 initiate the host innate immune response through a molecular mechanism involving RIG-I/IRF-3 and PI3K/NF-kappaB signaling pathways.  相似文献   

2.
3.
4.
5.
Dillon PJ  Parks GD 《Journal of virology》2007,81(20):11116-11127
Six amino acid substitutions in the shared N-terminal region of the P subunit of the viral polymerase and the accessory V protein convert the noncytopathic paramyxovirus simian virus 5 (SV5), which is a poor inducer of host cell responses, into a P/V mutant (P/V-CPI-) that induces high levels of apoptosis, interferon-beta (IFN-beta), and proinflammatory cytokines. In this study, we addressed the question of whether these new mutant phenotypes are due to the presence of an altered P protein or of an altered V protein or of both proteins. By the use of the P/V-CPI- mutant as a backbone, new mutant viruses were engineered to express the wild-type (WT) V protein (+V-wt) or WT P protein (+P-wt) from an additional gene inserted between the HN and L genes. In human epithelial cell lines, the +V-wt virus showed reduced activation of apoptosis and lower secretion of IFN-beta and proinflammatory cytokines compared to the parental P/V-CPI- virus. The presence of a V protein lacking the C-terminal cysteine-rich domain (corresponding to the SV5 I protein) did not reduce these host cell responses to P/V-CPI- infection. Unexpectedly, the +P-wt virus, which expressed a WT P subunit of the viral polymerase, also induced much lower levels of host cell responses than the parental P/V-CPI- mutant. For both +V-wt and +P-wt viruses, reduced levels of IFN-beta synthesis correlated with reduced IRF-3 dimerization and nuclear localization of IRF-3 and NF-kappaB, suggesting that the WT P and V proteins acted at an early stage in antiviral pathways. Host cell responses induced by the various P/V mutants directly correlated with levels of viral mRNA accumulation but not with steady-state levels of genomic RNA. Our results support the hypothesis that WT P and V proteins limit induction of antiviral responses by controlling the production of key viral inducers. A model is presented for the mechanism by which both the P subunit of the viral polymerase and the V accessory protein contribute to the ability of a paramyxovirus to limit activation of antiviral responses.  相似文献   

6.
7.
Chronic hepatitis C virus (HCV) infection is a major global public health problem. HCV infection is supported by viral strategies to evade the innate antiviral response wherein the viral NS3.4A protease complex targets and cleaves the interferon promoter stimulator-1 (IPS-1) adaptor protein to ablate signaling of interferon alpha/beta immune defenses. Here we examined the structural requirements of NS3.4A and the therapeutic potential of NS3.4A inhibitors to control the innate immune response against virus infection. The structural composition of NS3 includes an amino-terminal serine protease domain and a carboxyl-terminal RNA helicase domain. NS3 mutants lacking the helicase domain retained the ability to control virus signaling initiated by retinoic acid-inducible gene-I (RIG-I) or melanoma differentiation antigen 5 and suppressed the downstream activation of interferon regulatory factor-3 (IRF-3) and nuclear factor kappaB (NF-kappaB) through the targeted proteolysis of IPS-1. This regulation was abrogated by truncation of the NS3 protease domain or by point mutations that ablated protease activity. NS3.4A protease control of antiviral immune signaling was due to targeted proteolysis of IPS-1 by the NS3 protease domain and minimal NS4A cofactor. Treatment of HCV-infected cells with an NS3 protease inhibitor prevented IPS-1 proteolysis by the HCV protease and restored RIG-I immune defense signaling during infection. Thus, the NS3.4A protease domain can target IPS-1 for cleavage and is essential for blocking RIG-I signaling to IRF-3 and NF-kappaB, whereas the helicase domain is dispensable for this action. Our results indicate that NS3.4A protease inhibitors have immunomodulatory potential to restore innate immune defenses to HCV infection.  相似文献   

8.
9.
Here, we report that specific manipulations of the cellular response to virus infection can cause prevention of apoptosis and consequent establishment of persistent infection. Infection of several human cell lines with Sendai virus (SeV) or human parainfluenza virus 3, two prototypic paramyxoviruses, caused slow apoptosis, which was markedly accelerated upon blocking the action of phosphatidylinositol 3-kinases (PI3 kinases) in the infected cells. The observed apoptosis required viral gene expression and the action of the caspase 8 pathway. Although virus infection activated PI3 kinase, as indicated by AKT activation, its blockage did not inhibit JNK activation or IRF-3 activation. The action of neither the Jak-STAT pathway nor the NF-kappaB pathway was required for apoptosis. In contrast, IRF-3 activation was essential, although induction of the proapototic protein TRAIL by IRF-3 was not required. When IRF-3 was absent or its activation by the RIG-I pathway was blocked, SeV established persistent infection, as documented by viral protein production and infectious virus production. Introduction of IRF-3 in the persistently infected cells restored the cells' ability to undergo apoptosis. These results demonstrated that in our model system, IRF-3 controlled the fate of the SeV-infected cells by promoting apoptosis and preventing persistence.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
Dansako H  Ikeda M  Kato N 《The FEBS journal》2007,274(16):4161-4176
Toll-like receptors and RNA helicase family members [retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene-5 (MDA5)] play important roles in the induction of interferon-beta as a major event in innate immune responses after virus infection. TRIF (adaptor protein of Toll-like receptor 3)-mediated and Cardif (adaptor protein of RIG-I or MDA5)-mediated signaling pathways contribute rapid induction of interferon-beta through the activation of interferon regulatory factor-3 (IRF-3). Previously, it has been reported that the hepatitis C virus NS3-4A serine protease blocks virus-induced activation of IRF-3 in the human hepatoma cell line HuH-7, and that NS3-4A cleaves TRIF and Cardif molecules, resulting in the interruption of antiviral signaling pathways. On the other hand, it has recently been reported that non-neoplastic human hepatocyte PH5CH8 cells retain robust TRIF- and Cardif-mediated pathways, unlike HuH-7 cells, which lack a TRIF-mediated pathway. In the present study, we further investigated the effect of NS3-4A on antiviral signaling pathways. Although we confirmed that PH5CH8 cells were much more effective than HuH-7 cells for the induction of interferon-beta, we obtained the unexpected result that NS3-4A could not suppress the interferon-beta production induced by the TRIF-mediated pathway, although it suppressed the Cardif-mediated pathway by cleaving Cardif at the Cys508 residue. Using PH5CH8, HeLa, and HuH-7-derived cells, we further showed that NS3-4A could not cleave TRIF, in disagreement with a previous report describing the cleavage of TRIF by NS3-4A. Taken together, our findings suggest that the blocking of the interferon production by NS3-4A is not sufficient in HCV-infected hepatocyte cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号