首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In steadily flowing water at 20 degrees C and pH 7, five organisms had the following order of resistance to ozone (at constant levels of ozone): poliovirus 1 (PV1) less than Escherichia coli less than hepatitis A virus (HAV) less than Legionella pneumophila serogroup 6 less than Bacillus subtilis spores. The tests were repeated at 10 degrees C with HAV, PV1, and E. coli. Ozone inactivation of HAV and E. coli was faster at 10 degrees C than at 20 degrees C. At 20 degrees C, 0.25 to 0.38 mg of O3 per liter was required for complete inactivation of HAV but only 0.13 mg of O3 per liter was required for complete inactivation of PV1.  相似文献   

2.
In steadily flowing water at 20 degrees C and pH 7, five organisms had the following order of resistance to ozone (at constant levels of ozone): poliovirus 1 (PV1) less than Escherichia coli less than hepatitis A virus (HAV) less than Legionella pneumophila serogroup 6 less than Bacillus subtilis spores. The tests were repeated at 10 degrees C with HAV, PV1, and E. coli. Ozone inactivation of HAV and E. coli was faster at 10 degrees C than at 20 degrees C. At 20 degrees C, 0.25 to 0.38 mg of O3 per liter was required for complete inactivation of HAV but only 0.13 mg of O3 per liter was required for complete inactivation of PV1.  相似文献   

3.
Ten aerobically trained young adult females exercised continuously at 66% of maximum O2 uptake for 1 h while exposed orally to filtered air and 0.15 and 0.30 parts per million (ppm) ozone (O3) in both moderate (24 degrees C) and hot (35 degrees C) ambient conditions. Exposure to 0.30 ppm O3 induced significant impairment in forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1.0), and other pulmonary function variables. Exercise respiratory frequency (fR) increased, whereas tidal volume and alveolar volume (VA) decreased with 0.30 ppm O3 exposure. Significant interactions of O3 and ambient heat were obtained for fR and VA, whereas FVC and FEV1.0 displayed a trend toward an O3-temperature interaction. Although expired ventilation increased, the interactions could not be ascribed to a greater O3 effective dose in the 35 degrees C exposures. However, subjective discomfort increased with both O3 and heat exposure such that three subjects ceased exercise prematurely when O3 and ambient heat were combined. We conclude that accentuation of subjective limitations and certain physiological alterations by ambient heat coinciding with photochemical oxidant episodes is likely to result in more severe impairment of exercise performance, although the mechanisms remain unclear.  相似文献   

4.
Physiological responses (oxygen consumption) and behavioral responses (feeding and activity) of the mud snails Hydrobia ulvae and Hydrobia glyca at different salinities (20 per thousand-80 per thousand) and temperatures (20 degrees and 30 degrees C) were studied. After 24 h under experimental conditions, both Hydrobia species already showed maximal activities (>90%) for a wide salinity range (30 per thousand-70 per thousand), with significant differences in activity between species only outside the usual salinity range of the studied lagoon. In contrast, egestion rates of H. glyca were significantly higher at the lowest salinities tested (30 per thousand and 40 per thousand) irrespective of water temperature, whereas egestion rates of H. ulvae were always significantly higher (57% on average) at 20 degrees C than at 30 degrees C and at the usual salinities found in the field (40 per thousand and 50 per thousand). Both species showed an oxyregulatory response to dissolved oxygen concentrations ranging from saturation to 1.5 mg O(2) L(-1), although specific oxygen consumption rates were significantly higher at 30 degrees C than at 20 degrees C (Q(10)=1.47+/-0.08 for H. ulvae and Q(10)=12.1+/-0.06 for H. glyca) and at the lowest salinities (30 per thousand-50 per thousand for H. ulvae and 30 per thousand-40 per thousand for H. glyca). On average, specific rates were higher for the smaller-sized H. glyca (1.64+/-0.03 microg O(2) mg(-1) ash-free dry weight [AFDW]) than for H. ulvae (1.35+/-0.03 microg O(2) mg(-1) AFDW). Despite the overlapping of their tolerances to high temperatures and salinities, the observed interspecies differences could play a certain role in the distribution of H. ulvae and H. glyca in the studied habitat. In particular, the decreasing feeding activity but increasing respiration of H. ulvae at 30 degrees C for salinities that usually occur in the studied lagoon could represent disadvantages to H. glyca during the warm period.  相似文献   

5.
Water disinfection systems utilizing electrolytically generated copper and silver ions (200 and 20, 400 and 40, or 800 and 80 micrograms/liter) and low levels of free chlorine (0.1 to 0.4 mg/liter) were evaluated at room (21 to 23 degrees C) and elevated (39 to 40 degrees C) temperatures in filtered well water (pH 7.3) for their efficacy in inactivating Legionella pneumophila (ATCC 33155). At room temperature, a contact time of at least 24 h was necessary for copper and silver (400 and 40 micrograms/liter) to achieve a 3-log10 reduction in bacterial numbers. As the copper and silver concentration increased to 800 and 80 micrograms/liter, the inactivation rate significantly (P less than or equal to 0.05) increased from K = 2.87 x 10(-3) to K = 7.50 x 10(-3) (log10 reduction per minute). In water systems with and without copper and silver (400 and 40 micrograms/liter), the inactivation rates significantly increased as the free chlorine concentration increased from 0.1 mg/liter (K = 0.397 log10 reduction per min) to 0.4 mg/liter (K = 1.047 log10 reduction per min). Compared to room temperature, no significant differences were observed when 0.2 mg of free chlorine per liter with and without 400 and 40 micrograms of copper and silver per liter was tested at 39 to 40 degrees C. All disinfection systems, regardless of temperature or free chlorine concentration, showed increase inactivation rates when 400 and 40 micrograms of copper and silver per liter was added; however, this trend was significant only at 0.4 mg of free chlorine per liter.  相似文献   

6.
A marine microalga Gyrodinium impudicum strain KG03 produced sulfated exopolysaccharide designated as p-KG03, which showed a strong antiviral activity against encephalomyocarditis virus (EMCV). To optimize culture conditions for the production of p-KG03, mineral salts, vitamins, plant growth hormones, temperature, pH and light conditions were examined. From this study, M-KG03 medium for the maximum production of p-KG03 was suggested as follows; NH(4)Cl 75 microM, NaH(3)PO(4) 200 microM, NaHCO(3) 50 microM, Na(2)SO(4) 10 microM, FeCl(2) x 6H(2)O 10 microM, MnCl(2) x 4H(2)O 0.1 microM, vitamin B(12) 0.75 microg, naphthalene acetic acid (NAA) 7.5 microg and myo-inositol 200 mg per liter of aged sea water. The optimal temperature and pH were 22.5 degrees C and 8.0, respectively. The optimal light conditions of intensity and period were 150 microE m(-2) s(-1) and 16:8 h light:dark cycle. Finally, the cell growth and p-KG03 production were measured in one liter of M-KG03 medium with 1% CO(2) and 50 ml min(-1) of airflow using two liters airlift balloon type photobioreactor (ABTPR). At these optimal conditions, p-KG03 production and cell growth were 134.6+/-5.9 mg l(-1) and 123,076+/-1,597 cells ml(-1), respectively, representing a 7.7 and 5.1 times compared with f/2 medium with Erlenmeyer flask culture (p-KG03 production 17.5+/-1.3 mg l(-1) and cell growth 24,311+/-1,291 cells ml(-1)).  相似文献   

7.
Because it is often difficult to completely control ambient temperature, a study was conducted to investigate dynamic body temperature pressure saturated (BTPS) correction factors for spirometric data. A forced expiratory simulator system was heated to 37 degrees C and loaded with air saturated with water vapor. This air was then forced from the simulator into a dry rolling-seal spirometer maintained at various ambient temperatures from 3 to 32 degrees C. Errors in forced expiratory volume in 1 s (FEV1) and peak flow from assuming a constant BTPS correction ranged from 7.7 and 14.1% at 3 degrees C to 2.1 and 4.6% at 23 degrees C. Differences between errors observed when saturated and dry air were forced into the spirometer indicate that water vapor condensation introduces an added heat load to the spirometer, adding approximately one percent to the error in FEV1 at lower temperatures. By use of a model to estimate the dynamic BTPS correction factor, errors in FEV1 at all temperatures between 3 and 32 degrees C were reduced to less than 1.5%.  相似文献   

8.
The covalent immobilization of bovine liver catalase (CAT) on to florisil via glutaraldehyde was investigated. Optimum immobilization pH and temperature were determined as pH 6.0, 10 degrees C respectively, while the amount of initial CAT per g of carrier and immobilization time was determined as 5 mg g(-1) and 120 min, respectively. The Vmax values for free and immobilized CAT were found to be 1.7 x 10(5) and 2.0 x 10(4) micromol H2O2 min(-1) mg protein(-1), respectively, whereas KM values were 33.3 mM and 1722.0 mM respectively. Operational stability was determined by using a stirred batch-type column reactor. Immobilized CAT retained about 40% of its initial activity after 50 uses. It showed higher storage stability than free CAT at 4 degrees C and 25 degrees C. Its storage stability increased with increasing relative humidity (RH) from 0 to 20% of the medium. The highest storage stability was obtained in 20% RH, however, further increase in RH from 40 to 100% significantly decreased the storage stability.  相似文献   

9.
Neutron diffraction is used to localize water molecules and/or exchangeable hydrogen ions in the purple membrane by H2O/2H2O exchange experiments at different values of relative humidity. At 100% relative humidity, differences in the hydration between protein and lipid areas are observed, accounting for an excess amount of about 100 molecules of water in the lipid domains per unit cell. A pronounced isotope effect was observed, reproducibly showing an increase in the lamellar spacing from 60 A in 2H2O to 68 A in H2O. At 15% relative humidity, the positions of exchangeable protons became visible. A dominant difference density peak corresponding to 11 +/- 2 exchangeable protons was detected in the central part of the projected structure of bacteriorhodopsin at the Schiff's base end of the chromophore. A difference density map obtained from data on purple membrane films at 15% relative humidity in 2H2O, and the same sample after complete drying in vacuum, revealed that about eight of these protons belong to four water molecules. This is direct evidence for tightly bound water molecules close to the chromophore binding site of bacteriorhodopsin, which could participate in the active steps of H+ translocation as well as in the proton pathway across this membrane protein.  相似文献   

10.
The tensile properties of the outermost layer of skin of neonatal rats, the stratum corneum, were investigated at a constant strain rate as a function of moisture content and ambient test temperature. The results show that the mechnical behavior of this membrane, whose primary constituent is the fibrous protein keratin, can be significantly altered by variations in both the sorbed water content and ambient temperature. In particular, a brittle to ductile transition was observed at 25 degrees C once the hydration level exceeded 70% relative humidity. Similarly, an identical phenomenon was detected at temperatures beyond 40 degrees C for specimens whose equilibrium moisture concentrations were maintained at 10 g H2 O/100 g dry protein. Differential scanning calrimetry measurements showed the presence of a molecular relaxation process which migrated from 42 degrees C at 40% relative humidity to --18 degrees C at 95% relative humidity. It is postulated that this relaxation process, possibly corresponding to the glass transition of the fibrous protein component of stratum corneum, is primarily responsible for the observed behavior.  相似文献   

11.
Life table studies for the Angoumois grain moth, Sitotroga cerealella (Olivier), a pest on stored maize, Zea mays L., in West Africa, were conducted as part of the expansion of a mathematical simulation model that has been developed for two pests of stored maize. The effects of four temperatures (20, 25, 30, and 35 degrees C) and two relative humidity levels (44 and 80%) on developmental time, age-specific survivorship and fecundity, sex ratio, and intrinsic rate of natural increase (r(m)) of S. cerealella were investigated. Sex ratio was close to 1:1 at all temperatures and humidity. Minimum development time occurred close to 32 degrees C and 80% RH for both males and females, and developmental time of females was significantly shorter than that of males. Immature survivorship was highest between 25 and 30 degrees C and 80% RH and lowest at 35 degrees C under both humidity conditions. A similar low level was found at 20 degrees C and 44% RH. The greatest fecundity (124 eggs per female) occurred at 20 degrees C, 80% RH. The maximum r(m) value was 0.086 d(-1) at 30 degrees C and 80% RH, but the growth rate declined dramatically at 35 degrees C. If compared with the few other life table studies conducted on this species on maize in India and North America, some variation among the strains becomes evident. A common conclusion for the current study and previous ones is that optimal population development for S. cerealella occurs at approximately 30 degrees C and at high humidity.  相似文献   

12.
The metabolic physiology of the Crested Pigeon (Ocyphaps lophotes) and the Brush Bronzewing (Phaps elegans) is generally similar to that expected for birds of their size, but the Crested Pigeon has a number of characteristics which would aid survival in hot and dry regions. Body temperature increased similarly for the Crested Pigeon (from 38.8 degrees C to 41.5 degrees C) and the Brush Bronzewing (39.3 degrees C to 41.4 degrees C) over ambient temperatures (T(a)s) from 10 degrees C to 35 degrees C. Both species became hyperthermic (body temperature, T(b)>42 degrees C) at T(a)=45 degrees C. Basal metabolic rate of the Crested Pigeon (0.65 ml O(2) g(-1) h(-1) at 40 degrees C) was approximately 71% of that predicted for a columbid bird, while BMR of the Brush Bronzewing (0.87 ml O(2) g(-1) h(-1) at 20 degrees C to 40 degrees C) was approximately 102% of predicted. Total evaporative water loss increased exponentially with T(a) for both species, from <1 mg H(2)O g(-1) h(-1) at 10 degrees C to >12 mg H(2)O g(-1) h(-1) at 45 degrees C. It was similar and low for both species at T(a)<30 degrees C, but was higher for the Brush Bronzewing than the Crested Pigeon at T(a)>30 degrees C. Ventilatory minute volume matched oxygen consumption, such that oxygen extraction efficiency did not change with T(a) and was similar for both species (approximately 20%). Expired air temperature was considerably lower than T(b) for both species at T(a)<35 degrees C, potentially reducing respiratory water loss by approximately 65% at T(a)=10 degrees C to approximately 30% at T(a)=35 degrees C. Cutaneous evaporative cooling was significant for both species, with skin resistance decreasing as T(a) increased. The Crested Pigeon had a lower skin resistance than the Brush Bronzewing at T(a)=45 degrees C. The Brush Bronzewing had apparently reached its maximum cutaneous water loss at 30 degrees C and relied on panting to cool at higher T(a).  相似文献   

13.
A chemically defined medium was developed for the submerged cultivation of Streptomyces aureofaciens with a high secretion of caseinolytic activity. The medium composition is: 40 g/liter maltose; 1.640 g/liter L-leucine (0.0125M); 1.765 g/liter L-lysine (0.0125M); 6.976 g/liter K2HPO4 (0.04M); 4 g/liter CaCO3; 0.2 g/liter MgSO4.7H2O; 0.01 g/liter ZnSO4.7H2O; 0.01 g/liter FeSO4.7H2O: 0.01 g/liter MnSO4H2O, and 0.005 g/liter CoSO4.7H2O. Quantitative correlations were established between the concentrations of nutrients in the medium and the secretion of proteolytic activity. In this medium the secretion of proteolytic activity parallels growth, reaching a maximum after 70 hr at 30 degrees C in shaker cultures. The secretion appears to be an active process and to require aerobic conditions.  相似文献   

14.
The effects of bacteria, temperature, light, nitrate, and orthophosphate on growth of and hepatotoxin (desmethyl-3-microcystin-RR) production by Oscillatoria agardhii strains were studied under laboratory conditions. Strains were cultivated in Z8 medium under continuous illumination. Growth was determined by measuring dry weight and chlorophyll a, while toxin was analyzed by high-performance liquid chromatography. Two of the three toxic cultures studied produced more toxins in axenic than in nonaxenic cultures. High toxin production correlated with high nitrogen concentrations (test range, 0.42 to 84 mg of N per liter) and low light intensity (test range, 12 to 95 microeinsteins/m2 per s). Toxin production depended on phosphorus concentration at low levels of phosphorus (0.1 to 0.4 mg of P per liter) and higher concentrations had no additional effect. The optimum temperature for toxin production and growth of green O. agardhii was 25 degrees C. Red O. agardhii produced almost similar amounts of toxin at temperatures of 15 to 25 degrees C. The lowest toxin production by both strains was at 30 degrees C.  相似文献   

15.
Chlorine dioxide (ClO2) inactivation experiments were conducted with adenovirus type 40 (AD40) and feline calicivirus (FCV). Experiments were carried out in buffered, disinfectant demand-free water under high- and low-pH and -temperature conditions. Ct values (the concentration of ClO2 multiplied by contact time with the virus) were calculated directly from bench-scale experiments and from application of the efficiency factor Hom (EFH) model. AD40 Ct ranges for 4-log inactivation (Ct99.99%) at 5 degrees C were >0.77 to <1.53 mg/liter x min and >0.80 to <1.59 mg/liter x min for pH 6 and 8, respectively. For 15 degrees C AD40 experiments, >0.49 to <0.74 mg/liter x min and <0.12 mg/liter x min Ct99.99% ranges were observed for pH 6 and 8, respectively. FCV Ct99.99% ranges for 5 degrees C experiments were >20.20 to <30.30 mg/liter x min and >0.68 mg/liter x min for pH 6 and 8, respectively. For 15 degrees C FCV experiments, Ct99.99% ranges were >4.20 to <6.72 and <0.18 mg/liter x min for pH 6 and 8, respectively. Viral inactivation was higher at pH 8 than at pH 6 and at 15 degrees C than at 5 degrees C. Comparison of Ct values and inactivation curves demonstrated that the EFH model described bench-scale experiment data very well. Observed bench-scale Ct99.99% ranges and EFH model Ct99.99% values demonstrated that FCV is more resistant to ClO2 than AD40 for the conditions studied. U.S. Environmental Protection Agency guidance manual Ct99.99% values are higher than Ct99.99% values calculated from bench-scale experiments and from EFH model application.  相似文献   

16.
The effects of bacteria, temperature, light, nitrate, and orthophosphate on growth of and hepatotoxin (desmethyl-3-microcystin-RR) production by Oscillatoria agardhii strains were studied under laboratory conditions. Strains were cultivated in Z8 medium under continuous illumination. Growth was determined by measuring dry weight and chlorophyll a, while toxin was analyzed by high-performance liquid chromatography. Two of the three toxic cultures studied produced more toxins in axenic than in nonaxenic cultures. High toxin production correlated with high nitrogen concentrations (test range, 0.42 to 84 mg of N per liter) and low light intensity (test range, 12 to 95 microeinsteins/m2 per s). Toxin production depended on phosphorus concentration at low levels of phosphorus (0.1 to 0.4 mg of P per liter) and higher concentrations had no additional effect. The optimum temperature for toxin production and growth of green O. agardhii was 25 degrees C. Red O. agardhii produced almost similar amounts of toxin at temperatures of 15 to 25 degrees C. The lowest toxin production by both strains was at 30 degrees C.  相似文献   

17.
18.
Low-pressure mercury UV (LP-UV) lamps have long been used for bacterial inactivation, but due to certain disadvantages, such as the possibility of mercury leakage, deep-UV-C light-emitting diodes (DUV-LEDs) for disinfection have recently been of great interest as an alternative. Therefore, in this study, we examined the basic spectral properties of DUV-LEDs and the effects of UV-C irradiation for inactivating foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes, on solid media, as well as in water. As the temperature increased, DUV-LED light intensity decreased slightly, whereas LP-UV lamps showed increasing intensity until they reached a peak at around 30°C. As the irradiation dosage and temperature increased, E. coli O157:H7 and S. Typhimurium experienced 5- to 6-log-unit reductions. L. monocytogenes was reduced by over 5 log units at a dose of 1.67 mJ/cm2. At 90% relative humidity (RH), only E. coli O157:H7 experienced inactivation significantly greater than at 30 and 60% RH. In a water treatment study involving a continuous system, 6.38-, 5.81-, and 3.47-log-unit reductions were achieved in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, at 0.5 liter per minute (LPM) and 200 mW output power. The results of this study suggest that the use of DUV-LEDs may compensate for the drawbacks of using LP-UV lamps to inactivate foodborne pathogens.  相似文献   

19.
Exposure of humans to ambient levels of ozone (O(3)) causes inflammatory changes within lung tissues. These changes have been reported for the "initial" (1- to 3-h) and "late" (18- to 20-h) postexposure periods. We hypothesized that at the late period, when protein and cellular markers of inflammation at the airway surface remain abnormal and the integrity of the epithelial barrier is compromised, bronchial reactivity would be increased. To test this, we measured airway responsiveness to cumulative doses of methacholine (MCh) aerosol in healthy subjects 19+/-1 h after a single exposure to O(3) (130 min at ambient levels between 120 and 240 parts/billion and alternate periods of rest and moderate exercise) or filtered air. Exposures were conducted at two temperatures: mild (22 degrees C) and moderate (30 degrees C). At the late period, bronchial reactivity to MCh increased, i.e., interpolated dose of MCh leading to a 50% fall in specific airway conductance (PC(50)) was less after O(3) than after filtered air. PC(50) for O(3) at 22 degrees C was 27 mg/ml (20% less than the PC(50) after filtered air), and for O(3) at 30 degrees C it was 19 mg/ml (70% less than the PC(50) after filtered air). The forced expiratory volume in 1 s (FEV(1)) at the late time point after O(3) was slightly but significantly reduced (2.3%) from the preexposure level. There was no relationship found between the functional changes observed early after exposure to O(3) and subsequent changes in bronchial reactivity or FEV(1) at the late time point. These results suggest that bronchial reactivity is significantly altered approximately 1 day after O(3); this injury may contribute to the respiratory morbidity that is observed 1-2 days after an episode of ambient air pollution.  相似文献   

20.
An investigation determined the effects of environmental moisture content or water activity (Aw), exposure humidity, and sterilant concentration on the resistance of microbial spores. Decimal reduction values [expressed as D values at 54.4 C-specified concentration (milligrams per liter) of ethylene oxide] were determined from spore destruction curves of Bacillus subtilis var. niger dried on hygroscopic and nonhygroscopic surfaces. Four groups of spore preparations were preconditioned in one of four Aw environments (<0.1, 0.1, 0.5, 0.95) for 2 weeks or longer and were exposed to 500 mg of ethylene oxide per liter at 54.4 +/- 3 C and 10, 50, and 95% relative humidity in a specially designed thermochemical death rate apparatus. A fifth group did not receive any preconditioning treatment and was exposed immediately after preparation, in the same apparatus at the same temperature, to ethylene oxide concentrations of 200, 400, 600, 800, and 1,200 mg/liter and relative humidities of 15, 30, 50, 60, and 90%. The resistance of the spores on both types of surfaces to ethylene oxide increased proportionately with the Aw of the conditioning environment. The study also showed that moisture in the exposure system was not as critical a variable as the ethylene oxide concentration. The spore destruction rates, irrespective of the carrier types at all concentrations and at different humidities, varied little from one another. The decimal reduction values were reduced as the ethylene oxide concentration increased, and no optimal exposure humidity concentration was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号