首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
An experiment was made on the fourth, fifth and sixth successive crops of winter wheat to determine the effects of various treatments on the troubles which result from close cereal cropping. Eyespot and lodging were prevalent in the first year (1946); weeds in the second; eyespot, lodging, take-all and weeds in the third.
Spraying with H2SO4 reduced the incidence of eyespot, lodging and weeds, and increased yield of grain on plots which received sulphate of ammonia (by 2.7, 2.2 and 10.0 cwt./acre in successive years).
Sulphate of ammonia increased the incidence at harvest of eyespot and lodging, reduced take-all and consistently increased yield of straw. Eyespot and lodging reduced the effect of the fertilizer on yield of grain, take-all increased it.
Increase in seed rate increased the incidence of severe eyespot and of take-all; it increased lodging except when plants were dwarfed by take-all.
Weight of straw and percentage straws with severe eyespot lesions independently affected lodging, together accounting for 51% of the variance in percentage area lodged at harvest and 64 % of that lodged 33 days earlier.
Mean yields of grain on untreated plots sown with 3.3 1/2 bushels seed/acre fell from 26.0 to 22.5 to 11.7 cwt./acre in successive years, whereas yields of 28.4, 29.9 and 29.1 cwt./acre were obtained on sprayed plots sown with 1 1/2.2 bushels seed/acre which received 4 cwt./acre sulphate of ammonia, showing that high yields were maintained when eyespot, lodging, take-all and weeds were controlled.
By 1948 yields of grain on unsprayed plots had fallen to the level of those on similarly manured plots on the continuous wheat experiment on Broadbalk field. Spraying increased grain by amounts similar to those resulting from one year's fallow on Broadbalk; but fallow had its greatest effects on plots with low nitrogen, spraying on those with high nitrogen.  相似文献   

2.
Putative biological and chemical treatments for controlling take-all were used in each of three consecutive years at two locations where winter wheat crops were grown in naturally-infested fields. The chemical treatments more often decreased take-all than the biological treatments, but no treatment consistently and significantly decreased take-all, nor did any cause a significant increase in yield. An isolate of Bacillus cereus var. mycoides and one of B. pumilis, applied as soil drenches in autumn or spring, or in the seed furrows, were usually ineffective. Of the few significant effects on disease, half were associated with increases and half with decreases, and most occurred in April and did not persist to late June. Two strains of Pseudomonas pluorescens applied to the seed were ineffective. The fungicide benomyl, applied as a drench in autumn and spring at 20 kg/ha was ineffective, while nuarimol, applied as a drench in autumn at 2 kg/ha was sometimes effective. Nuarimol incorporated into the seed bed at 2 kg/ha was the most effective treatment. In analyses using a functional relationship model for data from treated and untreated plots 12% of 176 data sets for biological treatments, 38% of 96 data sets for chemical treatments and 81% of 16 data sets for combined treatments showed increasing efficiency of the treatment with increasing disease intensity. These findings also demonstrate an additional advantage of the experimental design, namely that treatments are tested at different disease intensity levels within fields.  相似文献   

3.
Six sterol biosynthesis-inhibiting fungicides representing several combinations of properties were applied to soil to control naturally-occurring take-all (caused by Gaeumannomyces graminis var. tritici) in winter wheat in field experiments in two successive years. The average take-all severity category was never more than moderate in the different clay-loam and sandy loam sites used in each year. At each site in each year there were six treatments and an untreated control in an arrangement based on a balanced-incomplete-block design for six treatments in 10 blocks each with three treatments. Each block had three treated plots and a control plot and was paired with the complementary block of three treatments (plus control) to form a complete replicate, of which there were 30 per site. Take-all assessments in June or July showed that after incorporation into the seed bed (at 2 kg ha“1and sometimes at 1 kg ha”1) in autumn, two non-volatile, strongly lipophilic compounds, nuarimol and triadimenol, with good intrinsic toxicity to the take-all fungus and slow rates of degradation, partially controlled take-all. However, another compound, flutriafol, with similar properties to nuarimol and triadimenol, controlled take-all less. Two slightly volatile, strongly lipophilic compounds, flusilazole and penconazole, with good intrinsic activity, were less effective (at 2 kg ha-1). A volatile, less lipophilic compound, PP 969, with less intrinsic activity, also partially controlled take-all, but only after application as a drench in the spring (2 kg ha-1). The most effective treatments were generally more effective the greater the level of disease (as indicated by assessments of disease in control plots), especially in spring assessments of disease. Although flutriafol did not perform as expected, it still seems reasonable to conclude that the requirements for a soil-applied fungicide to control take-all are likely to be: (i) good intrinsic fungitoxicity, (ii) some mobility in soil water (i.e. not strongly lipophilic), and (iii) season-long persistence.  相似文献   

4.
Endophytic actinobacteria isolated from healthy cereal plants were assessed for their ability to control fungal root pathogens of cereal crops both in vitro and in planta. Thirty eight strains belonging to the genera Streptomyces, Microbispora, Micromonospora, and Nocardioidies were assayed for their ability to produce antifungal compounds in vitro against Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease in wheat, Rhizoctonia solani and Pythium spp. Spores of these strains were applied as coatings to wheat seed, with five replicates (25 plants), and assayed for the control of take-all disease in planta in steamed soil. The biocontrol activity of the 17 most active actinobacterial strains was tested further in a field soil naturally infested with take-all and Rhizoctonia. Sixty-four percent of this group of microorganisms exhibited antifungal activity in vitro, which is not unexpected as actinobacteria are recognized as prolific producers of bioactive secondary metabolites. Seventeen of the actinobacteria displayed statistically significant activity in planta against Ggt in the steamed soil bioassay. The active endophytes included a number of Streptomyces, as well as Microbispora and Nocardioides spp. and were also able to control the development of disease symptoms in treated plants exposed to Ggt and Rhizoctonia in the field soil. The results of this study indicate that endophytic actinobacteria may provide an advantage as biological control agents for use in the field, where others have failed, due to their ability to colonize the internal tissues of the host plant.  相似文献   

5.
Assessments of Phialophora radicicola var. graminicola (PRG) and Gaeumannomyces graminis var. tritici (GGT) were made by culturing and by direct microscopic examination of pieces of seminal roots from 16 winter wheat crops grown in different cropping sequences and with different phosphate manuring. PRG occurred on all wheat crops, but was abundant only on wheat after grass, where it seemed to delay the onset of damaging take-all by 1 yr. Delayed occurrence of take-all by phosphate fertiliser was not related to differences in populations of PRG. Wheat grown in ‘take-all decline’ soils had only small amounts of PRG, indicating that the development and the decline of take-all epidemics may be influenced by different biological control mechanisms; breaking sequences of wheat crops by 1 yr grass leys might harness the advantages of both mechanisms.  相似文献   

6.
Winter wheat was grown for six successive years (Expt 1) and for three successive years (Expt 2) in field experiments on different soil types. Artificial inoculum of the take-all fungus (Gaeumannomyces graminis var. tritici cultured on autoclaved oat grains) was incorporated in the soil of some of the plots just before, or at, sowing of the first winter wheat crop. Expt 1 tested the incorporation of similar amounts of inoculum (212 kg ha-1) at different depths. Expt 2 tested different amounts of inoculum at the same, shallow depth. Early sowing (September), late sowing (October) and spring inoculation were additional treatments, applied to the first crop only, in Expt 2. Seasonal factors apart, the disease outcome in the first year after inoculation depended on amounts and placement of applied inoculum, as well as date of sowing. Deeper inoculum resulted in less disease (Expt 1). Severe take-all was produced in Expt 2 by incorporating inoculum shallowly in sufficient quantities (400 kg ha-1 or more). Less inoculum (200 kg ha-1) generated less disease, especially in earlier-sown plots. Differences in disease amongst inoculum treatments were greatest in the first year and diminished subsequently, particularly where sowing had been early in the first year. In Expt 1, where first crops exposed to artificial inoculum developed moderate-to-severe disease, disease in subsequent second and/or third crops was less. In the fourth crop a second peak of disease occurred, coinciding with a first peak in sequences without added inoculum. Take-all decline (TAD) appeared to be expressed in all sequences thereafter. In Expt 2 in sequences without added inoculum, TAD occurred after a peak of disease in the second crop. Where 400 kg ha-1 or more of inoculum were added, disease was severe in the first year and decreased progressively in successive years. Disease was less patchy in plots that received artificial inoculum. However, it remains uncertain mat severe disease caused by artificial inoculation achieved an early onset of true TAD. The infectivity of the top 12 cm of soil in the first 3 yr of Expt 1, determined by bioassay, depended on the depth of added inoculum and amount of disease in subsequent crops. However, at the time of the naturally occurring peak of disease severity (in either inoculated or non-inoculated plots) it did not predict either disease or TAD. Differences and similarities amongst epidemics developing naturally and those developing from different amounts and placement of applied inoculum have been revealed. The epidemiological implications of adding inoculum and the potential value of artificially-created epidemics of take-all in field trials are discussed.  相似文献   

7.
Dulout  Anne  Lucas  Philippe  Sarniguet  Alain  Doré  Thierry 《Plant and Soil》1997,197(1):149-155
Two experiments were carried out in France in which disease indices were used to evaluate the effects of wheat volunteers and blackgrass (Alopecurus myosuroides) on soil infectivity and soil conduciveness to take-all caused by Gaeumannomyces graminis var. tritici. Soil infectivity was evaluated by measuring the disease index on susceptible wheat plants grown on soil samples collected from the field. Soil conduciveness to the disease was obtained by measuring disease indices on plants grown on soil samples to which different amounts of take-all fungus inoculum were added. One experiment (Expt. 1) was carried out using soils from farmers' fields (two fields in 1994 and two in 1995); soil infectivity and soil conduciveness were evaluated for three experimental situations: bare soil, soil with wheat volunteers and soil with blackgrass plants. In 1994 the soil infectivity was zero in bare soil, high with the wheat cover, and intermediate with the blackgrass cover. In 1995 the soil infectivity was uniformly low for all three conditions. Soils bearing wheat were less conducive than bare soil, soils bearing blackgrass and bare soils were similarly conducive. A second experiment (Expt. 2) carried out in 1995 compared the soil infectivity and soil conduciveness to take-all of soils planted with wheat or blackgrass in set-aside land after periods of wheat monoculture of 0–6 yr. The soil infectivity was low for all treatments. The soil was more conducive after blackgrass than after wheat. In both cases, the soil conduciveness was less when the monoculture had continued for more than 4 yr. The decline was less after blackgrass than after wheat. Thus, whenever set-aside is set up during the increase phase of the disease in fields with cereal successions, abundant wheat volunteers might hinder the expected positive effect of a break in cereal successions on take-all development. The presence of blackgrass in a set-aside field, with significant soil infectivity and high soil conduciveness, might increase the risks of take-all development in a wheat crop following set-aside.  相似文献   

8.
Soil treatment fungicides were tested against take-all (Gaeumannomyces graminis var. tritici) in three field experiments with winter wheat. Fungicides were applied as drenches either before sowing in autumn, and incorporated by rotary harrowing, or to the crop in spring. The most effective treatments were autumn applied benomyl (20 kg/ha) and nuarimol (0·55-4·4 kg/ha). However, the highest nuarimol concentration depressed yield. Benomyl sometimes induced a resurgence of take-all in the second wheat crop after treatment. Nuarimol had no adverse effects in subsequent crops, and neither fungicide hindered the onset of take-all decline in a third crop after treatment. The possible value of soil treatment in future control strategies is discussed.  相似文献   

9.
Bacteria from wheat field soils were screened in vitro and in glasshouse experiments for antagonism to the take-all fungus Gaeumannomyces graminis var. tritici. Field experiments to test the ability of the selected bacteria to reduce naturally occurring take-all disease gave variable results. In the most successful series the yield of spring wheat was doubled and the amount of disease reduced to half the unprotected control value. Failure to show disease control seemed to be due either to a naturally low incidence of the disease on the trial sites or to especially dry soil conditions.  相似文献   

10.
The yield of wheat and the incidence of take-all were measured in crops grown in six different 4-year sequences, repeated in 3 successive years. The first crop of winter wheat grown after oats or beans yielded 13–23 cwt/acre (1632–2887 kg/ha) more grain than wheat after wheat or barley. Spring wheat after oats yielded 2–5 cwt/acre (250–625 kg/ha) more than spring wheat after wheat. The smaller yields of wheat after wheat or barley were caused mostly by greater prevalence of take-all. Regression analysis indicates that each 1 % increase in straws with take-all decreased yield of winter wheat by 0·6%. Take-all was more prevalent in the second and third successive wheat crops after oats than in the fourth crop.  相似文献   

11.
Reduction of Take-all Inoculum by Rotation with Lupins, Oats or Field Peas   总被引:1,自引:0,他引:1  
The feasibility of use of lupins, oats and field peas as alternative rotation crops to reduce inoculum of the take-all fungus (Gaeumannomyces graminis var. tritici) (under Western Australian field conditions) and disease in following wheat was investigated with a one year field trial, the soil from which was used in two succeeding pot experiments. The possible mechanisms of reduction of inoculum and disease by these crops were examined testing the soil for pathogen and disease suppression. Rotation with lupins or oats for two seasons reduced (P <0.05) inoculum of the take-all fungus and lupins, oats or field peas reduced (P <0.05) disease in following wheat. Lupins alone reduced inoculum and disease, (P <0.1) after one season. No apparent suppression of the pathogen in the absence of host plants was recorded after one season of rotation, but after two seasons, lupins, oats or field peas all suppressed (P <0.02) growth of the pathogen within soil. However only field pea soil suppressed take-all in comparison with the wheat control. Although after two seasons all rotation crops were effective in reducing inoculum and disease the mechanisms of reduction appear to differ between the rotation crops used in this study.  相似文献   

12.
The genotypic diversity that occurs in natural populations of antagonistic microorganisms provides an enormous resource for improving biological control of plant diseases. In this study, we determined the diversity of indigenous 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. occurring on roots of wheat grown in a soil naturally suppressive to take-all disease of wheat. Among 101 isolates, 16 different groups were identified by random amplified polymorphic DNA (RAPD) analysis. One RAPD group made up 50% of the total population of DAPG-producing Pseudomonas spp. Both short- and long-term studies indicated that this dominant genotype, exemplified by P. fluorescens Q8r1-96, is highly adapted to the wheat rhizosphere. Q8r1-96 requires a much lower dose (only 10 to 100 CFU seed(-1) or soil(-1)) to establish high rhizosphere population densities (10(7) CFU g of root(-1)) than Q2-87 and 1M1-96, two genotypically different, DAPG-producing P. fluorescens strains. Q8r1-96 maintained a rhizosphere population density of approximately 10(5) CFU g of root(-1) after eight successive growth cycles of wheat in three different, raw virgin soils, whereas populations of Q2-87 and 1M1-96 dropped relatively quickly after five cycles and were not detectable after seven cycles. In short-term studies, strains Q8r1-96, Q2-87, and 1M1-96 did not differ in their ability to suppress take-all. After eight successive growth cycles, however, Q8r1-96 still provided control of take-all to the same level as obtained in the take-all suppressive soil, whereas Q2-87 and 1M1-96 gave no control anymore. Biochemical analyses indicated that the superior rhizosphere competence of Q8r1-96 is not related to in situ DAPG production levels. We postulate that certain rhizobacterial genotypes have evolved a preference for colonization of specific crops. By exploiting diversity of antagonistic rhizobacteria that share a common trait, biological control can be improved significantly.  相似文献   

13.
The effects of direct drilling, shallow cultivation and ploughing on the infection of winter wheat roots by the take-all fungus (Gaeumannomyces graminis var. tritici) were studied on three field sites over a number of years. All three soil types were categorised by Cannell, Davies, Mackney & Pidgeon (1978) as suitable for sequential direct drilling. The results show that a smaller proportion of roots was infected at depth in the direct-drilled plots in May/June. However by July these differences had all but disappeared and an estimate of infection in the top 7 cm of the roots (approximately equivalent to traditional hand sampling for take-all) gave a reliable comparison of the total take-all on plants grown under these different cultivation systems.  相似文献   

14.
This research was initiated to determine whether soils suppressive to take-all of wheat caused by Gaeumannomyces graminis var. tritici (Ggt) occur in Montana, and to identify the organisms most likely involved in this suppression. From an initial screening of eight soils collected from different wheat growing areas of Montana, two were highly suppressive to take-all. Microbial characterization of these soils indicated that different mechanisms were involved in the suppression. In Larslan soil, mycoparasitism appeared to be the main mechanism. Two different fungi with exceptional ability to reduce the severity of take-all were isolated from this soil. One of these fungi could parasitize the hyphae of Ggt. Field tests with these fungi in Ggt infested soil showed increases of over 100% in both harvestble tillers and grain yield as compared to treatments without these two fungi. In tests with 48 different bacteria and 10 actinomycetes from Larslan soil, none were able to consistently reduce severity of take-all alone, or in mixtures. In Toston soil, antibiosis by actinomycetes and perhaps the involvement of Pseudomonas spp. in production of antibiotics and/or siderophores appeared to be the most likely mechanisms involved in take-all suppression. Increases in shoot dry weight over that in the Ggt infested control using mixtures of pseudomonads and actinomycetes ranged from 25% to 87%. Actinomycetes added individually or in mixtures to soil infested with Ggt consistently reduced the severity of the disease to a greater extent than did mixtures of Pseudomonas spp.  相似文献   

15.
Effects of applications of a mixture of ammonium sulphate and mono-ammonium phosphate and of ammonium nitrate on the incidence of take-all disease of wheat (caused by Gaeumannomyces graminis var. tritici) and on subsequent inoculum levels were studied in field and glasshouse experiments. In a field experiment in Western Australia, on a sandy soil at pH 5·4, nitrogen applications had no detectable effect on disease severity at anthesis, but ammonium sulphate treatment increased the number of propagules of the pathogen in the soil. In a pot experiment, in which seed was sown in the field experiment soils, disease was greater in soil from plots treated with ammonium sulphate and least in soil from the nil-nitrogen plots, reflecting the respective inoculum levels in the field plot. However, treatment of the soils of lower inoculum with ammonium sulphate and ammonium nitrate during this pot experiment decreased disease. A second pot experiment confirmed the effectiveness of ammonium sulphate and ammonium nitrate in reducing take-all at lower inoculum levels, and their ineffectiveness at higher inoculum levels.  相似文献   

16.
The antifungal compound 2,4-diacetylphloroglucinol (DAPG) is produced in the rhizosphere of wheat by pseudomonad populations responsible for the natural biological control phenomenon known as “take-all decline.” Studies were conducted to elucidate the impact of DAPG and its co-product 2,4,6-trihydroxyacetophenone (THA) on the production of Pseudomonas fluorescens for biological control. Increasing DAPG from 0.1 g/l to 0.5 g/l and THA from 0.05 g/l to 0.5 g/l significantly inhibited the growth and lowered the yield of viable bacteria in liquid cultures. On further examination of these metabolites applied in seed coatings, levels of DAPG and THA exceeding 0.05 mg/g seed significantly reduced wheat germination percentages. The three-way interaction of DAPG, THA, and culture medium ingredients was significant, and greatest seed germination loss (40–50%) was observed when 0.5 mg DAPG and 0.25 mg THA were combined in a coating of 0.5 ml culture medium per gram of seed. Based on the results of Biolog GN microplate, flask, and fermentor screens of C sources, proline was found to optimize the viable cell yields of the P. fluorescens strains tested. The combination of proline with glucose and urea as C and N sources in growth media could be optimized to minimize DAPG production and maximize the vitality of P. fluorescens Q8R1-96 and Q69c-80:miniTn5:phl20 (DAPG over-producer). In production cultures, the proline supply rate offers a potentially useful means to optimize the biological control agent yield and quality.  相似文献   

17.
Irrespective of type and cropping history, soils with take-all decline (D soils) contained a take-all-decreasing factor that could be transmitted to cereal soils in which take-all had not declined (U soils). As little as 0.001 % by weight of D soil decreased take-all by 50 % in some seedling assays, but in a longer, outdoor test the decrease proved to be temporary and within 10 wk disease increased to equal that in unamended U soil. In two tests in which D soil was amended with U soil there was an unexpected increase in disease in seedling assays. Particulate fractions (0.2-2.0 μm) from leachates of D soils, but not the coarse fractions (> 1 mm, dry sieved; > 150μm, wet sieved) of these soils, decreased disease in assays. Although moved downwards by water, the transmissible factor in D soil did not spread laterally into adjacent unamended U soil and D soil amendments of U soil were most effective as top dressings and least effective when initially placed below assay seedlings. D soil was slightly less effective when added 14 days after planting wheat in U soil, but incubating soil mixtures for up to 4 wk before planting gave variable results, although there was always some decrease in take-all. The transmissible factor could be eliminated by heating moist soil for 30 min at 70 oC (but not 60 oC). The evidence suggests that the factor is biological, but is insufficient to suggest that it is the cause of take-all decline.  相似文献   

18.
The antibiotics phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (Phl) are major determinants of biological control of soilborne plant pathogens by various strains of fluorescent Pseudomonas spp. In this study, we described primers and probes that enable specific and efficient detection of a wide variety of fluorescent Pseudomonas strains that produce various phenazine antibiotics or Phl. PCR analysis and Southern hybridization demonstrated that specific genes within the biosynthetic loci for Phl and PCA are conserved among various Pseudomonas strains of worldwide origin. The frequency of Phl- and PCA-producing fluorescent pseudomonads was determined on roots of wheat grown in three soils suppressive to take-all disease of wheat and four soils conducive to take-all by colony hybridization followed by PCR. Phenazine-producing strains were not detected on roots from any of the soils. However, Phl-producing fluorescent pseudomonads were isolated from all three take-all-suppressive soils at densities ranging from approximately 5 x 10(sup5) to 2 x 10(sup6) CFU per g of root. In the complementary conducive soils, Phl-producing pseudomonads were not detected or were detected at densities at least 40-fold lower than those in the suppressive soils. We speculate that fluorescent Pseudomonas spp. that produce Phl play an important role in the natural suppressiveness of these soils to take-all disease of wheat.  相似文献   

19.
不同小麦品种对播娘蒿的影响   总被引:2,自引:0,他引:2  
播娘蒿是黄淮麦区主要田间杂草,在管理粗放的麦田,播娘蒿密度可达100株·m-2以上,严重影响了小麦的产量和品质。因此,对小麦-杂草复合体中杂草的生长发育规律进行研究,寻找降低草害的有效途径引起许多学者极大关注[1,2],而目前有关防除麦田杂草的研究多集中于化学防治方面[3]。然而,出于环境保护和经济成本上的考虑,化学除草受到了挑战。研究人员[4,5]发现,不同物种在竞争力上存在差异,禾谷类作物属于竞争力很强的作物[6],冬小麦及冬黑麦又是其中竞争力最强的物种。就小麦栽培种而言,存在着不同的品种类型,研究不同小麦品种对杂草的抑制作…  相似文献   

20.
Experiments on soil drenching with fungicides against take-all in wheat   总被引:3,自引:0,他引:3  
In short term pot experiments benomyl, iprodione and KWG 0599 applied as soil drenches in several types of soil significantly suppressed take-all symptoms from inoculum placed just below wheat seeds planted 1×5 cm deep, and in sand but not other soils when seeds were 5 cm deep. Benomyl was, however, effective against inoculum below seed planted 5 cm deep in a loam-sand mixture when the drench contained an alcohol ethoxylate surfactant. Computer simulations of fungicide distributions in the soils correlated well with disease control observations. In long term outdoor pot experiments two drenches with benomyl (without surfactant) controlled disease significantly for at least 3 months against inoculum placed 15 cm deep. The significance of these results for the practical control of take-all by fungicides is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号