首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Recent evolutionary models of reproductive partitioning within animal societies (known as 'optimal skew', 'concessions' or 'transactional' models) predict that a dominant individual will often yield some fraction of the group's reproduction to a subordinate as an incentive to stay in the group and help rear the dominant's offspring. These models quantitatively predict how the magnitude of the subordinate's 'staying incentive' will vary with the genetic relatedness between dominant and subordinate, the overall expected group output and the subordinate's expected output if it breeds solitarily. We report that these predictions accord remarkably well with the observed reproductive partitioning between conesting dominant and subordinate queens in the social paper wasp Polistes fuscatus. In particular, the theory correctly predicts that (i) the dominant's share of reproduction, i.e. the skew, increases as the colony cycle progresses and (ii) the skew is positively associated both with the colony's productivity and with the relatedness between dominant and subordinate. Moreover, aggression between foundresses positively correlated with the skew, as predicted by transactional but not alternative tug-of-war models of societal evolution. Thus, our results provide the strongest (quantitative support yet for a unifying model of social evolution.  相似文献   

2.
In communally breeding animals, there is an evolutionary conflict over the partitioning of reproduction within the group. If dominant group members do not have complete control over subordinate reproduction, this conflict may favour the evolution of infanticidal behaviour (by either subordinates or dominants or both). Elimination of offspring, however, is likely to be constrained by the difficulty of discriminating between an individual's own progeny and those of cobreeders. Here, we develop an evolutionarily stable strategy (ESS) model of reproductive partitioning, which demonstrates that killing of young can be favoured, even if such discrimination is not possible. The model predicts that infanticide will typically be associated with elevated levels of offspring production, and is most likely to prove evolutionarily stable when the coefficient of relatedness between cobreeders is low, and offspring are cheap to produce. The effect of infanticide is to release subordinates from the reproductive restraint they would otherwise be forced to exercise, leading to reduced reproductive skew. When infanticide is possible, addition of numerous young to the joint brood will not lower overall productivity, because progeny in excess of the most productive brood size are eliminated. Subordinates are thus free to contribute more young to the brood than would otherwise be the case. In addition, we show that the possibility of infanticide may influence the pattern of reproduction within a group even if no offspring are actually killed at equilibrium. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

3.
Models of reproductive skew have shed light on why animal societies vary in the partitioning of reproduction among group members. However, their application to cooperative vertebrate societies remains controversial. A particular problem is that previous models assume that skew in paternity is determined by interactions among males and males only. This conflicts with observations from many species that indicate that females exert control over the distribution of paternity. Here we address this shortfall in the current theory by developing two models to explore the expected patterns of skew in three member groups in which a female controls the allocation of paternity among two males. The first "staying incentive" model extends previous "transactional" (or "concession") models to examine the conditions where females will be willing to share reproduction among a dominant and a subordinate male to retain the subordinate in the group. The second "work incentive" model explores patterns of skew where females allocate paternity in order to maximize the amount of care their offspring receive. The models make contrasting predictions about the nature of male-female conflict over reproduction and also about the relationships between skew and relatedness, ecological constraints, the relative quality of the subordinate male, and the relative cost of care for the two males. These divergent predictions provide a schema by which the evolutionary causes of variation in skew among males can be evaluated.  相似文献   

4.
Many communal breeders are characterized by a conflict over who gets to reproduce, with dominant individuals often claiming the largest share of reproduction in the group. How do dominants control breeding in these species? Although infanticide has often been invoked as a means of control, previous theoretical work on indiscriminate killing of young did not support this idea. There is, however, increasing evidence from field studies in both vertebrates and insects that infanticidal individuals can discriminate between their own offspring and those of other group members, and thus avoid the risk of accidentally killing their own progeny. In a simple game-theoretical model we demonstrate that the capacity for discriminate infanticide can promote high reproductive skew even though few or no offspring are actually killed. When discrimination is good and offspring are cheap to produce, the threat of infanticide prevents the subordinate cobreeder from adding many young to the joint brood, and no killing need occur. High levels of infanticide tend to occur only when discrimination is poor, costs of offspring production are low and/or relatedness is low.  相似文献   

5.
We compared observed levels of reproductive skew in the cooperatively breeding acorn woodpecker (Melanerpes formicivorus) with those predicted by two alternative transactional models. "Concession" models predict the degree to which parentage is shared assuming that a single dominant is in complete control of reproduction. Alternatively, "restraint" models predict reproductive sharing assuming that the dominant controls only whether subordinates remain in the group but does not control its share of reproduction. Reproductive skew is high among males: on average, the most successful male sires more than three times as many offspring as the next most successful male. Females share parentage equally and have lower constraints on dispersal and lower survival rates compared with males, which is consistent with predictions from the concessions model. Also as predicted by the concessions model, yearly variation in opportunities for dispersal before the breeding season correlates positively with skew. However, in contrast to concessions but consistent with the restraint model, skew decreases with relatedness. Thus, neither model consistently predicts patterns of reproductive skew in this species. We suggest that models of reproductive skew will need to include competitive interactions among potential breeders and mate choice before they will adequately predict patterns of reproductive partitioning in most vertebrate societies.  相似文献   

6.
Reproductive skew in multimale groups may be determined by the need for alpha males to offer reproductive opportunities as staying incentives to subordinate males (concessions), by the relative fighting ability of the alpha male (tug‐of‐war) or by how easily females can be monopolized (priority‐of‐access). These models have rarely been investigated in species with exceptionally long male tenures, such as white‐faced capuchins, where female mate choice for novel unrelated males may be important in shaping reproductive skew. We investigated reproductive skew in white‐faced capuchins at Sector Santa Rosa, Costa Rica, using 20 years of demographic, behavioural and genetic data. Infant survival and alpha male reproductive success were highest in small multimale groups, which suggests that the presence of subordinate males can be beneficial to the alpha male, in line with the concession model's assumptions. None of the skew models predicted the observed degree of reproductive sharing, and the probability of an alpha male producing offspring was not affected by his relatedness to subordinate males, whether he resided with older subordinate males, whether he was prime aged, the number of males or females in the group or the number of infants conceived within the same month. Instead, the alpha male's probability of producing offspring decreased when he was the sire of the mother, was weak and lacked a well‐established position and had a longer tenure. Because our data best supported the inbreeding avoidance hypothesis and female choice for strong novel mates, these hypotheses should be taken into account in future skew models.  相似文献   

7.
Most recent models of the partitioning of reproduction attempt to explain patterns of skew on the assumption that dominant individuals have complete control over breeding opportunities within the group, but may nevertheless concede a share of direct reproduction to subordinates as an incentive to remain peacefully in the association. Although these models may be applicable to some animal societies, we argue that they fail to provide a comprehensive theory of skew. Instead, we suggest that subordinates may often be able to claim unsanctioned reproduction for themselves, but will be forced to exercise a degree of reproductive restraint lest they incite ejection by the dominant. Reproductive skew, in other words, may reflect the threat of ejection (inducing subordinate restraint) rather than the threat of subordinate departure (inducing reproductive concessions by dominants). We present a simple ESS model of reproductive skew under these circumstances, which demonstrates that a shift in emphasis from reproductive concessions by dominants to reproductive restraint on the part of subordinates, radically alters the predictions of skew models. High group productivity, high relatedness and (when group members are related) strong ecological constraints are all expected to lead to reduced skew (the opposite conclusions to those of previous, concession-based analyses). The reason is that these factors reduce the benefits (or increase the costs) of ejection to the dominant, who therefore does best to tolerate more subordinate reproduction.  相似文献   

8.
Reproductive skew and group size: an N-person staying incentive model   总被引:5,自引:2,他引:3  
Transactional models of social evolution emphasize that dominantbreeders may donate parcels of reproduction to subordinatesin return for peaceful cooperation. We develop a general transactionalmodel of reproductive partitioning and group size for N-persongroups when (1) expected group output is a concave (decelerating)functiong[N] of the number N of group members, and (2) thesubordinates may receive fractions of total group reproduction("staying incentives") just sufficient to induce them to stayand help the dominant instead of breeding solitarily. We focusespecially on "saturated" groups, that is, groups that havegrown in size just up to the point where subsequent joining by subordinates is no longer beneficial either to them (in parent-offspring groups) or to the dominant (in symmetric-relatedness groups).Decreased expected output for solitary breeding increases thesaturated group size and decreases the staying incentives.Increased relatedness decreases both the saturated group sizeand the staying incentives. However, in saturated groups withsymmetric relatedness, an individual subordinate's staying incentive converges to 1 — g[N* — 1]/g[N*]) regardless ofrelatedness, where N* is the size of a saturated group, providedthat the g[N] function near the saturated group size N* isapproximately linear. Thus, staying incentives can be insensitiveto relatedness in saturated groups, although the dominant's total fraction of reproduction (total skew) will be more sensitive.The predicted ordering for saturated group size is: Parent-fullsibling offspring = non-relatives > symmetrically relatedrelatives. Strikingly, stable groups of non-relatives can formfor concaveg[N] functions in our model but not in previousmodels of group size lacking skew manipulation by the dominant.Finally, symmetrical relatedness groups should tend to breakup by threatened ejections of subordinates by dominants, whereas parent-offspring groups should tend to breakup via unforceddepartures by subordinates.  相似文献   

9.
Models of reproductive skew are concerned with the partitioning of reproduction between dominant and subordinate members of a group. In an interesting extension of these models, Reeve and Ratnieks briefly considered whether it might benefit subordinates to engage in aggressive behavior to test the fighting ability of a dominant. Their analysis suggested that such testing should be more probable in groups that feature high skew and, hence, perhaps among closer relatives (because high relatedness favors high skew). Here we explore in more detail the possibility of dominance testing. Three models that differ in the outcome of fights over dominance are presented: in the first model, the loser of the challenge is killed; in the second model, the loser is evicted from the nest; and, in the third model, the loser becomes (or remains) subordinate. In each case we consider the independent effects of the parameters that determine skew (namely, relatedness, group productivity, and ecological constraints) on the predicted level of dominance testing. We then construct an amalgamated model to examine situations where fights may lead to any one of the three outcomes. Our analysis reveals that, in the majority of cases, higher relatedness will in fact lead to lower levels of aggression. Moreover, dominance testing need not be associated with high skew. Rather, the relationship between skew and dominance testing will depend on which factor (relatedness, group productivity, or level of ecological constraints) is principally responsible for variation in the distribution of reproduction.  相似文献   

10.
We studied mechanisms responsible for reproductive skew in female Alpine marmots. In each social group, only dominant females produced weaned young although subordinate females had similar body condition, were fertile as indicated by high levels of oestradiol during the mating season, and occasionally started pregnancies. During the period of gestation, dominant females initiated significantly more agonistic interactions against subordinate females, resulting in significantly increased levels of glucocorticoids and decreased levels of progesterone in subordinates. Results suggested that reproductive suppression in female Alpine marmots is mediated by the negative effects of stress (glucocorticoids) on the activity of the hypothalamic-pituitary-gonadal axis. The strength of competition between subordinate and dominant females was affected by their relatedness. Dominant females attacked unrelated subordinate females more, whereas amicable behaviour was observed mainly between dominant females and their daughters. These differences could be explained by differences in indirect fitness: related subordinate females benefited from warming the offspring of the dominant female during hibernation. Reproductive suppression was apparently costly for dominant females, because their reproductive success decreased as the number of adult subordinate females in a group increased. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

11.
Reproductive skew theory seeks to integrate social and ecologicalfactors thought to influence the division of reproduction amonggroup-living animals. However, most reproductive skew modelsonly examine interactions between individuals of the same sex.Here, we suggest that females can influence group stabilityand conflict among males by modifying their clutch size andmay do so if they benefit from the presence of subordinate malehelpers or from reduced conflict. We develop 3 models, basedon concessions-based, restraint, and tug-of-war models, in whichfemale clutch size is variable and ask when females will increasetheir clutch size above that which would be optimal in the absenceof male–male conflict. In concessions-based and restraintmodels, females should increase clutch size above their optimaif the benefits of staying for subordinate males are relativelylow. Relatedness between males has no effect on clutch size.When females do increase clutch size, the division of reproductionbetween males is not influenced by relatedness and does notdiffer between restraint and concessions-based models. Bothof these predictions are in sharp contrast to previous models.In tug-of-war models, clutch size is strongly influenced byrelatedness between males, with the largest clutches, but thefewest surviving offspring, produced when males are unrelated.These 3 models demonstrate the importance of considering third-partyinterests in the decisions of group-living organisms.  相似文献   

12.
A plethora of recent models examines how genetic and environmental factors might influence partitioning of reproduction ('skew') in animal societies, but empirical data are sparse. We used three microsatellite loci to estimate skew on 13 nests of the Malaysian hover wasp, Liostenogaster flavolineata. Groups are small in L. flavolineata (1-10 females) and all females are capable of mating and laying eggs. Despite considerable variation between nests in parameters expected to influence skew, skew was uniformly high. On 11 of the 13 nests, all female eggs had been laid by a single dominant female. A second female had laid one to two out of 5-10 eggs respectively on the two remaining nests. A likelihood analysis suggested that on average, 90% of the male eggs had also been laid by the dominant. The slightly lower skew among male eggs might reflect the lower average relatedness of subordinates to male versus female offspring of the dominant. We suggest that high skew in L. flavolineata may result from strong ecological constraints and a relatively high probability that a subordinate will eventually inherit the dominant, egg-laying position.  相似文献   

13.
Cooperative breeders often exhibit reproductive skew, where dominant individuals reproduce more than subordinates. Two approaches derived from Hamilton's inclusive fitness model predict when subordinate behavior is favored over living solitarily. The assured fitness return (AFR) model predicts that subordinates help when they are highly likely to gain immediate indirect fitness. Transactional skew models predict dominants and subordinates "agree" on a level of reproductive skew that induces subordinates to join groups. We show the AFR model to be a special case of transactional skew models that assumes no direct reproduction by subordinates. We use data from 11 populations of four wasp species (Polistes, Liostenogaster) as a test of whether transactional frameworks suffice to predict when subordinate behavior should be observed in general and the specific level of skew observed in cooperative groups. The general prediction is supported; in 10 of 11 cases, transactional models correctly predict presence or absence of cooperation. In contrast, the specific prediction is not consistent with the data. Where cooperation occurs, the model accurately predicts highly biased reproductive skew between full sisters. However, the model also predicts that distantly related or unrelated females should cooperate with low skew. This prediction fails: cooperation with high skew is the observed norm. Neither the generalized transactional model nor the special-case AFR model can explain this significant feature of wasp sociobiology. Alternative, nontransactional hypotheses such as parental manipulation and kin recognition errors are discussed.  相似文献   

14.
Many cooperatively breeding societies are characterized by high reproductive skew, such that some socially dominant individuals breed, while socially subordinate individuals provide help. Inbreeding avoidance serves as a source of reproductive skew in many high‐skew societies, but few empirical studies have examined sources of skew operating alongside inbreeding avoidance or compared individual attempts to reproduce (reproductive competition) with individual reproductive success. Here, we use long‐term genetic and observational data to examine factors affecting reproductive skew in the high‐skew cooperatively breeding southern pied babbler (Turdoides bicolor). When subordinates can breed, skew remains high, suggesting factors additional to inbreeding avoidance drive skew. Subordinate females are more likely to compete to breed when older or when ecological constraints on dispersal are high, but heavy subordinate females are more likely to successfully breed. Subordinate males are more likely to compete when they are older, during high ecological constraints, or when they are related to the dominant male, but only the presence of within‐group unrelated subordinate females predicts subordinate male breeding success. Reproductive skew is not driven by reproductive effort, but by forces such as intrinsic physical limitations and intrasexual conflict (for females) or female mate choice, male mate‐guarding and potentially reproductive restraint (for males). Ecological conditions or “outside options” affect the occurrence of reproductive conflict, supporting predictions of recent synthetic skew models. Inbreeding avoidance together with competition for access to reproduction may generate high skew in animal societies, and disparate processes may be operating to maintain male vs. female reproductive skew in the same species.  相似文献   

15.
Within-brood or -litter dominance provides fitness-related benefits if dominant siblings selfishly skew access to food provided by parents in their favour. Models of facultative siblicide assume that dominants exert complete control over their subordinate sibling's access to food and that control is maintained, irrespective of the subordinate's hunger level. By contrast, a recent functional hypothesis suggests that subordinates should contest access to food when the cost of not doing so is high. Here, we show that within spotted hyena (Crocuta crocuta) twin litters, dominants most effectively skew access to maternal milk in their favour when their aggression prompts a highly submissive response. When hungry, subordinates were less submissive in response to aggression, thereby decreasing lost suckling time and increasing suckling time lost by dominants. In a species where adult females socially dominate adult males, juvenile females were more often dominant than males in mixed-sex litters, and subordinate sisters used more effective counter-tactics against dominant brothers than subordinate brothers against dominant sisters. Our results provide, to our knowledge, the first evidence in a mammal that dominant offspring in twin litters do not exert complete control over their sibling's access to resources (milk), and that sibling dominance relationships are influenced by sibling sex and training effects.  相似文献   

16.
Recent models postulate that the members of a social group assess their ecological and social environments and agree a "social contract" of reproductive partitioning (skew). We tested social contracts theory by using DNA microsatellites to measure skew in 24 cofoundress associations of paper wasps, Polistes bellicosus. In contrast to theoretical predictions, there was little variation in cofoundress relatedness, and relatedness either did not predict skew or was negatively correlated with it; the dominant/subordinate size ratio, assumed to reflect relative fighting ability, did not predict skew; and high skew was associated with decreased aggression by the rank 2 subordinate toward the dominant. High skew was associated with increased group size. A difficulty with measuring skew in real systems is the frequent changes in group composition that commonly occur in social animals. In P. bellicosus, 61% of egg layers and an unknown number of non-egg layers were absent by the time nests were collected. The social contracts models provide an attractive general framework linking genetics, ecology, and behavior, but there have been few direct tests of their predictions. We question assumptions underlying the models and suggest directions for future research.  相似文献   

17.
Transactional concession models of social evolution explain the reproductive skew within groups by assuming that a dominant individual completely controls the allocation of reproduction to other group members. The models predict when the dominant will benefit from donating parcels of reproduction to other members in return for peaceful cooperation. Using linear programming methods, we present a 'majority-rules' model in which the summed actions of all society members, each with equal power, completely determine the reproductive share of any single member. The majority-rules model predicts that, despite the diffusion of power, a 'virtual dominant' (a dominant lacking special behavioural power) will emerge and that the reproductive skew will be exactly that predicted if the virtual dominant were to control completely the group's reproductive partitioning. The virtual dominant is the individual to which group members have the maximum average genetic relatedness. This result greatly broadens the applicability of transactional models of reproductive skew to social groups of any size, such as large-colony eusocial insects, and explains why queens in such colonies can achieve reproductive domination without any behavioural enforcement. Moreover, the majority-rules model unifies transactional-skew theory with models of worker policing and even generates a new theory for the cooperation among somatic cells in a multicellular organism.  相似文献   

18.
Concession-based reproductive skew models predict that social groups can form via persuasion, whereby dominant individuals forfeit some reproduction to subordinates as an incentive to stay and help. We have developed an alternative skew model based on manipulation, whereby dominant individuals coerce subordinates into staying and helping by imposing costs on their independent reproductive prospects. Stable groups can evolve under a much wider range of genetic and ecological conditions under this manipulation model than under concession models. We describe evidence that various forms of pre-emptive and ongoing manipulation occur in nature and we discuss the implications of the model for the development of a general theory of social evolution.  相似文献   

19.
Sexual selection theory predicts that in group-living mammals, male reproductive tactics can lead to high reproductive skew in favor of dominant individuals. In sifakas (Propithecus verreauxi), a group-living primate with extremely seasonal reproduction, male reproductive success is highly skewed because dominant males sire almost all offspring despite a tendency toward an even adult group sex ratio. To understand the underlying behavioral mechanism resulting in this rank-related reproductive skew in male sifakas, we studied mate-guarding as a potential reproductive tactic. Behavioral observations of dominant males and adult females in combination with hormonal determination of timing of female receptivity in 9 groups at Kirindy Forest revealed that dominant males spent more time in proximity to females when they were receptive and were responsible for the maintenance of this proximity. Results also indicated that monopolization of receptive females was facilitated by both estrous asynchrony within groups and by the ability of dominant males to obtain olfactory cues as to the timing of female receptivity. Although dominant males engaging in mate-guarding are expected to experience various costs, there was no evidence for decreased foraging behavior and only a trend toward increased aggression between dominant and subordinate non-natal males within groups. Our results are in accordance with the hypothesis that dominant males use mate-guarding to monopolize receptive females and that it is one proximate mechanism that contributes to the high reproductive skew observed within the population of male sifakas at Kirindy.  相似文献   

20.
Cooperative breeding often results in unequal reproduction between dominant and subordinate group members. Transactional skew models attempt to predict how unequal reproduction can be before the groups themselves become unstable. A number of variants of transactional models have been developed, with a key difference being whether reproduction is controlled by one party or contested by all. It is shown here that ESS solutions for all situations of contested control over reproduction are given by the original tug-of-war model (TOW). Several interesting results follow. First, TOW can escalate enough to destabilize some types of groups. Particularly vulnerable are those that have low relatedness and gain little from cooperative breeding relative to solitary reproduction. Second, TOW can drastically reduce group productivity and especially the inclusive fitness of dominant individuals. Third, these results contrast strongly with those from variants of TOW models that include concessions to maintain group stability. Such models are shown to be special cases of the general and simpler TOW framework, and to have assumptions that may be biologically suspect. Finally, the overall analysis suggests that there is no mechanism within existing TOW framework that will prevent a costly struggle for reproductive control. Because social species rarely exhibit the high levels of aggression predicted by TOW models, alternative evolutionary mechanisms are considered that can limit conflict and produce more mutually beneficial outcomes. The further development of alternative models to predict patterns of reproductive skew are highly recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号