首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of new inhibitors of plasmepsin II (PlmII) Plasmodium falciparum, which was one of the key factors of survival of malarial parasite, was synthesized. The inhibitors were analogues of pepstatin with different substitutions for the alanine residue. Effects of the inhibitors on human PlmII and cathepsin D were studied. Inhibition of PlmII by the substrate was found. This discovery required modification of the Henderson method for determination of inhibition constants. Two synthesized inhibitors were shown to exhibit a pronounced selectivity to PlmII (K i = 5.5 and 5 nM) in comparison with that of cathepsin D (K i = 230 and 3000 nM, respectively).  相似文献   

2.
Summary Wheat-barley chromosome addition lines were compared by isoelectric focusing of protein extracts to identify chromosomes carrying loci for the major immunochemically distinct protease inhibitors of barley grains. Structural genes for the following inhibitors were localized: an inhibitor of both endogenous -amylase 2 and subtilisin (ASI) on chromosome 2, two chymotrypsin/subtilisin inhibitors (CI-1 and CI-2) on chromosome 5 (long arm) and the major trypsin inhibitor (TI-1) on chromosome 3.  相似文献   

3.
Proteases and their inhibitors play a pivotal role in developmental and differentiative processes. In the present report we investigated the immunohistochemical localization of 1-antitrypsin, 1-antichymotrypsin and inter--trypsin inhibitor in first trimester as well as in term human placentas. For this purpose polyclonal antibodies against these serine-protease inhibitors were used. All inhibitors were expressed in the villous syncytiotrophoblast of first and last trimester placentas. Placental fibrinoid was positively stained for 1-antitrypsin and inter--trypsin inhibitor throughout gestation. 1-Antitrypsin and 1-antichymotrypsin showed a strong immunostaining in the Hofbauer cells (first trimester and full term placentas). Extravillous cytotrophoblast was negative for the three protease inhibitors throughout gestation. The presence of the three inhibitors in the syncytiotrophoblast suggests a role in coagulative, invasive and immunomodulatory processes. Fibrinoid, staining for 1-antitrypsin and inter--trypsin inhibitor, could also have an important immunoprotective function. The presence of protease inhibitors in the Hofbauer cells suggests an involvement of these cells in villous remodelling and differentiative processes.  相似文献   

4.
Summary We describe an algorithm for the concurrent comparison of three or more amino acid sequences. The basis of the approach is a progressive evaluation of selected segments from each sequence. Only a small subset of all possible segments from each sequence is compared, and a minimum of information is retained for the trace-back of the alignment. As a result, this method has the advantage of being both rapid and minimally consumptive of computer memory when constructing an alignment. This being the case, there are no practical limits on the length of sequences that may be aligned. A computer program for the alignment of three sequences is described, and this method is compared with two three-sequence extensions of the Needleman and Wunsch variety, including a recently published approach. In addition, we have made simultaneous alignments of sets of four and five sequences with this selected-segment method.  相似文献   

5.
A summary of the discovery and advancement of inhibitors of fatty acid amide hydrolase (FAAH) is presented.  相似文献   

6.
Like their human hosts, Plasmodium falciparum parasites rely on the ubiquitin-proteasome system for survival. We previously identified PfUCHL3, a deubiquitinating enzyme, and here we characterize its activity and changes in active site architecture upon binding to ubiquitin. We find strong evidence that PfUCHL3 is essential to parasite survival. The crystal structures of both PfUCHL3 alone and in complex with the ubiquitin-based suicide substrate UbVME suggest a rather rigid active site crossover loop that likely plays a role in restricting the size of ubiquitin adduct substrates. Molecular dynamics simulations of the structures and a model of the PfUCHL3-PfNedd8 complex allowed the identification of shared key interactions of ubiquitin and PfNedd8 with PfUCHL3, explaining the dual specificity of this enzyme. Distinct differences observed in ubiquitin binding between PfUCHL3 and its human counterpart make it likely that the parasitic DUB can be selectively targeted while leaving the human enzyme unaffected.  相似文献   

7.
Dihydrofolate reductases (DHFRs) from Plasmodium falciparum (Pf) and various species of both prokaryotic and eukaryotic organisms have a conserved tryptophan (Trp) at position 48 in the active site. The role in catalysis and binding of inhibitors of the conserved Trp48 of PfDHFR has been analysed by site-specific mutagenesis, enzyme kinetics and use of a bacterial surrogate system. All 19 mutant enzymes showed undetectable or very low specific activities, with the highest value of k(cat)/K(m) from the Tyr48 (W48Y) mutant (0.12 versus 11.94M(-1)s(-1)), of about 1% of the wild-type enzyme. The inhibition constants for pyrimethamine, cycloguanil and WR99210 of the W48Y mutants are 2.5-5.3 times those of the wild-type enzyme. All mutants, except W48Y, failed to support the growth of Escherichia coli transformed with the parasite gene in the presence of trimethoprim, indicating the loss of functional activity of the parasite enzyme. Hence, Trp48 plays a crucial role in catalysis and inhibitor binding of PfDHFR. Interestingly, W48Y with an additional mutation at Asn188Tyr (N188Y) was found to promote bacterial growth and yielded a higher amount of purified enzyme. However, the kinetic parameters of the purified W48Y+N188Y enzyme were comparable with W48Y and the binding affinities for DHFR inhibitors were also similar to the wild-type enzyme. Due to its conserved nature, Trp48 of PfDHFR is a potential site for interaction with antimalarial inhibitors which would not be compromised by its mutations.  相似文献   

8.
Zinc is both a vital nutrient and an important toxicant to aquatic biota. In order to understand the interplay between nutrition and toxicity, it will be important to determine the mechanisms and the factors that regulate zinc uptake. The mechanism of apical intestinal Zn(II) uptake in freshwater rainbow trout and its potential modification by the complexing amino acid histidine was investigated using brush-border membrane vesicles (BBMVs). Following characterisation of the BBMV preparation, zinc uptake in the absence of histidine was both time- and concentration-dependent and consisted of two components. A saturable phase of uptake was described by an affinity constant of 57±17 μM and a transport capacity of 1867±296 nmol mg membrane protein−1 min−1. At higher zinc levels (>500 μM) a linear, diffusive component of uptake was evident. Zinc transport was also temperature-dependent, with Q10 values suggesting zinc uptake was a carrier-mediated process. Zinc uptake by vesicles in the presence of histidine was correlated to a mono-histidine species (Zn(His)+) at all Zn(II) concentrations examined.  相似文献   

9.
In the past year, microarray technologies have moved beyond the proof-of-principle stage. Microarrays are now being used for genome-wide expression monitoring, large-scale polymorphism screening and mapping, and for the evaluation of drug candidates.  相似文献   

10.
11.
The proportion of amino acid substitutions driven by adaptive evolution can potentially be estimated from polymorphism and divergence data by an extension of the McDonald-Kreitman test. We have developed a maximum-likelihood method to do this and have applied our method to several data sets from three Drosophila species: D. melanogaster, D. simulans, and D. yakuba. The estimated number of adaptive substitutions per codon is not uniformly distributed among genes, but follows a leptokurtic distribution. However, the proportion of amino acid substitutions fixed by adaptive evolution seems to be remarkably constant across the genome (i.e., the proportion of amino acid substitutions that are adaptive appears to be the same in fast-evolving and slow-evolving genes; fast-evolving genes have higher numbers of both adaptive and neutral substitutions). Our estimates do not seem to be significantly biased by selection on synonymous codon use or by the assumption of independence among sites. Nevertheless, an accurate estimate is hampered by the existence of slightly deleterious mutations and variations in effective population size. The analysis of several Drosophila data sets suggests that approximately 25% +/- 20% of amino acid substitutions were driven by positive selection in the divergence between D. simulans and D. yakuba.  相似文献   

12.
Ras converting enzyme 1 (Rce1) is an endoprotease that catalyzes processing of the C-terminus of Ras protein by removing -aaX from the CaaX motif. The activity of Rce1 is crucial for proper localization of Ras to the plasma membrane where it functions. Ras is responsible for transmitting signals related to cell proliferation, cell cycle progression, and apoptosis. The disregulation of these pathways due to constitutively active oncogenic Ras can ultimately lead to cancer. Ras, its effectors and regulators, and the enzymes that are involved in its maturation process are all targets for anti-cancer therapeutics. Key enzymes required for Ras maturation and localization are the farnesyltransferase (FTase), Rce1, and isoprenylcysteine carboxyl methyltransferase (ICMT). Among these proteins, the physiological role of Rce1 in regulating Ras and other CaaX proteins has not been fully explored. Small-molecule inhibitors of Rce1 could be useful as chemical biology tools to understand further the downstream impact of Rce1 on Ras function and serve as potential leads for cancer therapeutics. Structure–activity relationship (SAR) analysis of a previously reported Rce1 inhibitor, NSC1011, has been performed to generate a new library of Rce1 inhibitors. The new inhibitors caused a reduction in Rce1 in vitro activity, exhibited low cell toxicity, and induced mislocalization of EGFP-Ras from the plasma membrane in human colon carcinoma cells giving rise to a phenotype similar to that observed with siRNA knockdowns of Rce1 expression. Several of the new inhibitors were more effective at mislocalizing K-Ras compared to a potent farnesyltransferase inhibitor (FTI), which is significant because of the preponderance of K-Ras mutations in cancer.  相似文献   

13.
14.
Summary.  Tryptophan is required in the pineal gland for the formation of serotonin, precursor of melatonin biosynthesis. The level of this amino acid in the serum and in the pineal gland of the rat undergoes a circadian rhythm, and reduced plasma tryptophan concentration decreases secretion of melatonin in humans. Tryptophan is transported into the cells by the long chain neutral amine acid system T and by the aromatic amino acid system T. The high affinity component of [3H]tryptophan uptake was studied in pinealocytes of the rat. Inhibition was observed in the presence of phenylalanine or tyrosine, but not in the presence of neutral amino acids, alanine, glycine, serine, lysine or by 2-aminobicyclo[2,2,1]-heptane-2-carboxylic acid, a substrate specific for system L. The transport of tryptophan was temperature-dependent and trans-stimulated by phenylalanine and tyrosine, but was energy-, sodium-, chloride-, and pH-independent. In addition, the sulphydryl agent N-ethylmaleimide did not modify the high affinity transport of tryptophan in pinealocytes. The kinetic parameters were not significantly different at 12:00 as compared to 24:00 h. The treatment with the inhibitor of tryptophan hydroxylase, p-chlorophenylalanine, produced an increase in the maximal velocity of the uptake and a reduction in the affinity at 12:00, but not at 24:00 h, probably indicating that during the day, the formation of serotonin in the pineal gland is favoured by elevating the uptake of tryptophan, whereas at 24:00 h other mechanisms, such as induction of enzymes are taking place. High affinity tryptophan uptake in the rat pineal gland occurs through system T and is upregulated during the day when the availability of serotonin is reduced. Received March 15, 2001 Accepted July 8, 2002 Published online January 20, 2003 Acknowledgements This work was supported by the Grant S1-3490 from Consejo Nacional de Investigaciones Cientificas y Tecnológicas (CONICIT), Venezuela. We appreciate the secretarial assistance of Mrs. Isabel Otaegui. Carmen I. Gutiérrez is a PhD Student from Ciencias Fisiológicas, Facultad de Medicina, Universidad Central de Venezueta (UCV), Caracas, and supported by Universidad Francisco de Miranda, Coro, Falcón, Venezuela. Joseph Glykys is a Medical Student from Universidad de Carabobo, Valencia, Venezuela, and an Assistant Student of Centro de Estudios Avanzados, IVIC. Authors' address: Dr. Lucimey Lima, Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo. 21827, Caracas 1020-A, Venezuela, Fax: 58-212-504-1295, E-mail: llima@cbb.ivic.ve  相似文献   

15.
With three recent market approvals and several inhibitors in advanced stages of development, the hepatitis C virus (HCV) NS3/4A protease represents a successful target for antiviral therapy against hepatitis C. As a consequence of dealing with viral diseases in general, there are concerns related to the emergence of drug resistant strains which calls for development of inhibitors with an alternative binding-mode than the existing highly optimized ones. We have previously reported on the use of phenylglycine as an alternative P2 residue in HCV NS3/4A protease inhibitors. Herein, we present the synthesis, structure–activity relationships and in vitro pharmacokinetic characterization of a diverse series of linear and macrocyclic P2 pyrimidinyloxyphenylglycine based inhibitors. With access to vinyl substituents in P3, P2 and P1′ positions an initial probing of macrocyclization between different positions, using ring-closing metathesis (RCM) could be performed, after addressing some synthetic challenges. Biochemical results from the wild type enzyme and drug resistant variants (e.g., R155 K) indicate that P3–P1′ macrocyclization, leaving the P2 substituent in a flexible mode, is a promising approach. Additionally, the study demonstrates that phenylglycine based inhibitors benefit from p-phenylpyrimidinyloxy and m-vinyl groups as well as from the combination with an aromatic P1 motif with alkenylic P1′ elongations. In fact, linear P2–P1′ spanning intermediate compounds based on these fragments were found to display promising inhibitory potencies and drug like properties.  相似文献   

16.
17.
Abstract

Although several plant protease inhibitors have been structurally characterized using X-ray crystallography, very few have been studied using NMR techniques. Here, we report an NMR study of the solution structure and dynamics of an inhibitory repeat domain (IRD) variant 12 from the wound-inducible Pin-II type proteinase inhibitor from Capsicum annuum. IRD variant 12 (IRD12) showed strong anti-metabolic activity against the Lepidopteran insect pest, Helicoverpa armigera. The NMR-derived three-dimensional structure of IRD12 reveals a three-stranded anti-parallel β-sheet rigidly held together by four disulfide bridges and shows structural homology with known IRDs. It is interesting to note that the IRD12 structure containing ~75% unstructured part still shows substantial amount of rigidity of N–H bond vectors with respect to its molecular motion.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
The aecA and aecB loci map at 250 and 290 degrees, respectively, on the Bacillus subtilis chromosomal genetic map. The aecB locus has been proposed as the structural gene for aspartokinase II. From DNA sequence analyses and comparisons to the sequence of the aspartokinase II gene, it can be concluded that the structural gene for aspartokinase II is located close to sdh at 250 degrees and cannot be aecB. A detailed map over 7 kbp in the 250 degree region is presented.  相似文献   

19.
Effects of various inhibitors of prostaglandin metabolism on essential fatty acid function in Culex pipiens were examined by rearing the mosquito in synthetic dietary media containing arachidonic acid and putative prostaglandin inhibitors in various combinations. Both non-steroidal and steroidal anti-inflammatory drugs variously inhibited overall development and the arachidonic acid-dependent viability of newly emerged adults. In many cases such inhibitory effects could be counteracted by increased concentrations of dietary arachidonic acid, indicating that in the mosquito, as in mammals, these drugs interfered with arachidonic acid function specifically. In the cases of non-steroidal anti-inflammatorials (indomethacin, phenylbutazone and acetaminophen), which are known to inhibit enzymes of the prostaglandin synthetase complex, such inhibition is construed to indicate that prostaglandinogenesis may be among the physiological functions underlying the essentiality of arachidonic acid for the mosquito.  相似文献   

20.
The renin-angiotensin system is associated with a variety of pathophysiological processes in many organ systems, and is known to be involved in the normal regulation of blood pressure and in the pathogenesis of renovascular hypertension. Angiotensin II is a multifunctional hormone that manifests its properties by interacting with two major subtypes of cell surface receptors (AT1 and AT2). Angiotensin converting enzyme (ACE) inhibitors are able to modify the actions of the renin-angiotensin system, and are indicated for the treatment of hypertension and heart disease. The antihypertensive effects of ACE inhibiting drugs are related to their ability to block the conversion ofthe decapeptide, angiotensin I, to the potent pressor octapeptide, angiotensin II. ACE inhibitors have been implicated in fetopathies in humans and perinatal mortality in rats, rabbits, sheep and baboons. Human fetopathies were seen when ACE inhibitors were given around the 26th week of gestation. The major adverse effects in babies include: oligohydramnios, renal tubular dysgenesis, neonatal anuria, calvarial and pulmonary hypoplasia, mild to severe intrauterine growth retardation, persistent patent ductus arteriosus and fetal or neonatal death. These developmental anomalies are thought to be partly due to a direct action of ACE inhibitors on the fetal renin-angiotensin system and partly due to the ischemia resulting from matemal hypotension and decreases in fetal-placental blood flow and oxygen/nutrient delivery to the fetus. The purpose ofthis review is to briefly discuss the pathophysiological role ofthe reninangiotensin system, the therapeutic uses of ACE inhibitors in pregnant patients and to focus primarily on the major fetotoxic effects of ACE inhibitors encountered in humans and animal models. I will also review our recent data which show that capozide (captopril + hydrochlorothiazide) not only produces oligohydramnios but also disturbs the balance of glucose and NaCl in the maternal plasma and amniotic fluid of the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号