首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many Escherichia coli K-12 strains display an intrinsic resistance to the peptide antibiotic microcin J25. In this study, we present results showing that the leucine-responsive regulatory protein, Lrp, is involved in this phenotype by acting as a positive regulator of YojI, a chromosomally encoded efflux pump which expels microcin out of cells. Exogenous leucine antagonizes the effect of Lrp, leading to a diminished expression of the pump and an increased susceptibility to microcin J25.  相似文献   

2.
As Escherichia coli strains enter the stationary phase of growth they become more resistant to the peptide antibiotic microcin J25. It is known that starvation for nutrients such as amino acids or glucose leads to increases in guanosine 3',5'-bispyrophosphate (ppGpp) levels and that the intracellular concentration of this nucleotide increases as cells enter the stationary phase of growth. Therefore, we examined the effects of artificially manipulating the ppGpp levels on sensitivity to microcin J25. A direct correlation was found between ppGpp accumulation and microcin resistance. Our results indicate that the nucleotide is required to induce production of YojI, a chromosomally encoded efflux pump which, in turn, expels microcin from cells. This would maintain the intracellular level of the antibiotic below a toxic level.  相似文献   

3.
In this report we studied the effect of the antimicrobial peptide, microcin J25, on the rat heart mitochondria. This peptide induced an important inhibition of the ATP synthesis with the concomitant enhancement of the ATP degradation. These effects were the result of two processes: on one hand, microcin J25 was able to insert into the membrane and hence alter its permeability with the consequent dissipation of the proton motive force. On the other, microcin J25 inhibited the enzymatic activity of the cytochrome c reductase (complex III) of the respiratory chain. The relevance of this study to the potential use of microcin J25 as an anti-tumoral agent is discussed.  相似文献   

4.
Microcin J25 (MccJ25) is the single representative of the immunity group J of the microcin group of peptide antibiotics produced by Enterobacteriaceae. It induces bacterial filamentation in susceptible cells in a non-SOS-dependent pathway [R. A. Salomon and R. Farias (1992) J. Bacteriol. 174, 7428-7435]. MccJ25 was purified to homogeneity from the growth medium of a microcin-overproducing Escherichia coli strain by reverse-phase HPLC. Based on amino acid composition and absolute configuration determination, liquid secondary ion and electrospray mass spectrometry, extensive two-dimensional NMR, enzymatic and chemical degradations studies, the structure of MccJ25 was elucidated as a 21-residue peptide, cyclo(-Val1-Gly-Ile-Gly-Thr- Pro-Ile-Ser-Phe-Tyr-Gly-Gly-Gly-Ala-Gly-His-Val-Pro-Glu-Tyr-Phe21- ). Although MccJ25 showed high resistance to most of endoproteases, linearization by thermolysin occurred from cleavage at the Phe21-Val1 bond and led to a single peptide, MccJ25-L. While MccJ25 exhibited remarkable antibiotic activity towards Salmonella newport and several E. coli strains (minimal inhibitory concentrations ranging between 0.01 and 0.2 microgram.mL-1), the thermolysin-linearized microcin showed a dramatic decrease of the activity, indicating that the cyclic structure is essential for the MccJ25 biological properties. As MccJ25 is ribosomally synthesized as a larger peptide precursor endowed with an N-terminal extremity, the present study shows that removal of this extension and head-tail cyclization of the resulting propeptide are the only post-translational modifications involved in the maturation of MccJ25, that appears as the first cyclic microcin.  相似文献   

5.
Entry of the peptide antibiotic microcin J25 (MccJ25) into target cells is mediated by the outer membrane receptor FhuA and the inner membrane protein SbmA. The latter also transports MccB17 into the cell cytoplasm. Comparison of MccJ25 and MccB17 revealed a tetrapeptide sequence (VGIG) common to both antibiotics. We speculated that this structural feature in MccJ25 could be a motif recognized by SbmA. To test this hypothesis, we used a MccJ25 variant in which the isoleucine in VGIG (position 13 in the MccJ25 sequence) was replaced by lysine (I13K). In experiments in which the FhuA receptor was bypassed, the substituted microcin showed an inhibitory activity similar to that of the wild-type peptide. Moreover, MccJ25 interfered with colicin M uptake by FhuA in a competition assay, while the I13K mutant did not. From these results, we propose that the Ile13 residue is only required for interaction with FhuA, and that VGIG is not a major recognition element by SbmA.  相似文献   

6.
A Tn5 insertion in tolC eliminated microcin J25 production. The mutation had little effect on the expression of the microcin structural gene and presumably acted by blocking microcin secretion. The tolC mutants carrying multiple copies of the microcin genes were less immune to the microcin. TolC is thus likely a component of a microcin export complex containing the McjD immunity protein, an ABC exporter.  相似文献   

7.
Microcin J25, an antimicrobial lasso-structure peptide, induces the opening of mitochondrial permeability transition pores and the subsequent loss of cytochrome c. The microcin J25 effect is mediated by the stimulation of superoxide anion overproduction. An increased uptake of calcium is also involved in this process. Additional studies with superoxide dismutase, ascorbic acid and different specific inhibitors, such as ruthenium red, cyclosporin A and Mn(2+), allowed us to establish a time sequence of events starting with the binding of microcin J25, followed by superoxide anion overproduction, opening of mitochondrial permeability transition pores, mitochondrial swelling and the concomitant leakage of cytochrome c.  相似文献   

8.
A 4.8-kb plasmid region carrying the four genes mcjABCD necessary for production of and immunity to the cyclic peptide antibiotic microcin J25 (MccJ25) has been sequenced. mcjA encodes the primary structure of MccJ25 as a precursor endowed with an N-terminal extension of 37 amino acids. The products of mcjB and mcjC are thought to be involved in microcin maturation, which implies cleavage of McjA and head-tail linkage of the 21-residue pro-MccJ25. The predicted McjD polypeptide, which is highly similar to several ABC exporters, was found to be required for MccJ25 secretion, thus explaining its ability to confer immunity to MccJ25.  相似文献   

9.
In this paper we compared the antibacterial activity of native microcin J25, a peptide antibiotic, with the activities of two analogues obtained by chemical modifications. In the first analogue, the negative charge of glutamic carboxyl group was specifically blocked with an L-glycine methyl ester and in the second the histidine imidazole ring was carbethoxylated. Both analogues decreased notably its antibiotic activity against Escherichia coli and Salmonella newport, strains sensible to the native microcin J25. The biological activity of the carbethoxylated analogue was completely recovered after treatment with hydroxylamine. The extreme importance of both polar residues could be interpreted as specific structural features indispensable for the peptide transportation into the cell, extrusion outside the cell or alternatively to inhibit the RNA-polymerase.  相似文献   

10.
Escherichia coli microcin J25 (MccJ25) is a plasmid-encoded antibiotic peptide consisting of 21 L-amino acid residues (G1-G-A-G-H5-V-P-E-Y-F10-V-G-I-G-T15-P-I-S-F-Y20-G). E. coli RNA polymerase (RNAP) is the intracellular target of MccJ25. MccJ25 enters cells after binding to specific membrane transporters: FhuA in the outer membrane and SbmA in the inner membrane. Here, we studied MccJ25 mutants carrying a substitution of His5 by Lys, Arg, or Ala. The inhibitory effects on cellular growth and in vitro RNAP activity were determined for each mutant microcin. The results show that all mutants inhibited RNAP in vitro. However, the mutants were defective in their ability to inhibit cellular growth. Experiments in which the FhuA protein was bypassed showed that substitutions of MccJ25 His5 affected the SbmA-dependent transport. Our results thus suggest that MccJ25 His5 located in the lariat ring is involved, directly or indirectly, in specific interaction with SbmA and is not required for MccJ25 inhibition of RNAP.  相似文献   

11.
Selection of spontaneous mutants for insensitivity to the peptide antibiotic microcin 25 led to the isolation of five categories of mutants. Phenotypic and mapping studies showed the mutations to be located in the fhuA, exb, tonB, and sbmA genes. The latter encodes a cytoplasmic membrane protein which is also required for the penetration of microcin B17.  相似文献   

12.
Delgado MA  Salomón RA 《Plasmid》2005,53(3):258-262
The Escherichia coli plasmid pTUC100 encodes production of, and immunity to, the peptide antibiotic microcin J25. In the present study, an approximately 8-kb fragment immediately adjacent to the previously sequenced microcin region was isolated and its DNA sequence was determined. The main features of the newly characterized region are: (i) a basic replicon which is almost identical to that of the RepFIIA plasmid R100; (ii) two ORFs with 96% identity to two ORFs of unknown function on pO157, a large plasmid harbored by enterohemorragic E. coli, and a large ORF which does not show significant homology to any other reported nucleotide or protein sequence; and (iii) two intact insertion sequences, IS1294 and IS1. Sequence analysis, as well as that of the G+C content of both the 8-kb fragment and the previously sequenced microcin locus, lead us to propose that plasmid pTUC100 is a composite structure assembled from DNA elements from various sources.  相似文献   

13.
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.  相似文献   

14.
In livestock production, antibiotics are used to promote animal growth, control infections and thereby increase profitability. This practice has led to the emergence of multiresistant bacteria such as Salmonella, of which some serovars are disseminated in the environment. The objective of this study is to evaluate microcin J25 as an inhibitor of Salmonella enterica serovars of various origins including human, livestock and food. Among the 116 isolates tested, 37 (31.8%) were found resistant to at least one antibiotic, and 28 were multiresistant with 19 expressing the penta-resistant phenotype ACSSuT. Microcin J25 inhibited all isolates, with minimal inhibitory concentration values ranging from 0.06 μg/ml (28.4 nM) to 400 μg/ml (189 μM). Interestingly, no cross-resistance was found between microcin J25 and antibiotics. Multiple sequence alignments of genes encoding for the different proteins involved in the recognition and transport of microcin J25 showed that only ferric-hydroxamate uptake is an essential determinant for susceptibility of S. enterica to microcin J25. Examination of Salmonella strains exposed to microcin J25 by transmission electronic microscopy showed for the first-time involvement of a pore formation mechanism. Microcin J25 was a strong inhibitor of several multiresistant isolates of Salmonella and may have a great potential as an alternative to antibiotics.  相似文献   

15.
16.
The antibiotic microcin J25 (MccJ25) was cleaved by hydrolysis with thermolysin giving a two-chain peptide (MccJ25-Th19) of 10 and 9 amino acid residues. MccJ25-Th19 with deep modifications in beta-hairpin region had no effect on Escherichia coli growth, but still inhibited RNA polymerase in vitro and oxygen consumption in Salmonella strains. MccJ25-Th19 showed antibiotic activity on E. coli transformed with plasmids containing either fhuA or sbmA genes, which code for proteins involved in MccJ25 transport. These results suggest that an intact beta-hairpin region is crucial for MccJ25 import but not for inhibition of E. coli RNA polymerase or oxygen consumption in Salmonella strains.  相似文献   

17.
We previously showed that the antimicrobial peptide microcin J25 induced the over-production of reactive oxygen species with the concomitant release of cytochrome c from rat heart mitochondria via the opening of the mitochondrial permeability transition pore. Here, we were able to demonstrate that indeed, as a consequence of the oxidative burst, MccJ25 induces carbonylation of mitochondrial proteins, which may explain the irreversible inhibition of complex III and the partial inhibition of superoxide dismutase and catalase. Moreover, the peptide raised the levels of oxidized membrane lipids, which triggers the release of cytochrome c. From in silico analysis, we hypothesize that microcin would elicit these effects through interaction with heme c1 at mitochondrial complex III. On the other hand, under an excess of l-arginine, MccJ25 caused nitric oxide overproduction with no oxidative damage and a marked inhibition in oxygen consumption. Therefore, a beneficial anti-oxidative activity could be favored by the addition of l-arginine. Conversely, MccJ25 pro-oxidative–apoptotic effect can be unleashed in either an arginine-free medium or by suppressing the nitric oxide synthase activity.  相似文献   

18.
Escherichia coli microcin J25 (MccJ25) is a 2107-Da peptide antibiotic whose uptake into E. coli is mediated by the outer-membrane receptor FhuA and the inner membrane proteins TonB, ExbB, ExbD, and SbmA. A survey of the sensitivity of several Salmonella enterica serovars showed that the antibiotic was highly active against some serovars, while S. Typhimurium, S. Derby, and some S. Enteritidis strains were completely resistant. Resistant strains became hypersensitive to MccJ25 when given the fhuA gene of E. coli, indicating that insensitivity is due to the inability of the FhuA protein to mediate penetration of MccJ25. Whereas in E. coli MccJ25 targets RNA polymerase, in S. Typhimurium it inhibits not only RNA synthesis but also cell respiration. Fluorescence viability staining showed that S. Typhimurium cells exposed to MccJ25 remain viable but are unable to form colonies.  相似文献   

19.
The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells.  相似文献   

20.
Microcins are low-molecular-weight proteins secreted by certain bacteria that act by limiting the growth of other bacteria that share the same ecological niche. In the present work, the previous microcin 24 system was resequenced.We detected three nucleotide differences in the microcin-coding gene that partially change the amino acid sequence. According to the present microcin nomenclature, we renamed the five genes constituting this microcin system (mcnRINAB), which are arranged in an operon-like structure: mcnR codes for a putative histone-like nucleoid protein regulator; mcnI codes for the immunity protein; mcnN encodes microcin N; and mcnA and mcnB correspond to an ATP-binding cassette transporter system. Purified microcin N has a molecular weight of 7274.23 Da, as determined by MS. This peptide was stable up to 100°C, resistant to treatment with lipase, lysozyme, trypsin, and chymotrypsin, and susceptible to degradation by proteinase K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号