首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The secondary structure of two-electron-reduced Megasphaera elsdenii flavodoxin has been determined by visual, qualitative inspection of the sequential connectivities involving C alpha H, C beta H and NH protons observed in NOESY (two-dimensional nuclear Overhauser enhancement spectroscopy) spectra. Results from an amide proton exchange experiment were used to confirm the secondary structure assignment and to demonstrate the compactness and stability of the protein. After the secondary structure elements were established, the global fold of the protein and the flavin binding site have been determined using nonsequential interresidual NOE connectivities as primary source of information. The secondary structure and the global fold of M. elsdenii and Clostridium MP flavodoxin appeared to be very similar, differences are observed however. M. elsdenii flavodoxin consists of a central parallel beta-sheet including five strands surrounded on both sides by a pair of alpha-helices.  相似文献   

2.
Assignments for the 137 amino acid residues of oxidized Megasphaera elsdenii flavodoxin have been made using the sequential resonance assignment procedure. Great benefit was experienced from assignments of the fully reduced protein. The secondary and tertiary structures of the typical alpha/beta protein remain virtually identical on going from the oxidized to the two-electron-reduced state as judged from two-dimensional NOE spectroscopy. However, functionally important conformation changes in the flavin-binding region do occur on reduction. Considerable reduction-state-dependent chemical shift variations of protons in the immediate vicinity of the isoalloxazine moiety take place. From analysis of these shifts, it can be concluded that ring current effects of the pyrazine part of the flavin diminish on two-electron reduction.  相似文献   

3.
Assignments for the 137 amino acid residues of Megasphaera elsdenii flavodoxin in the reduced state have been made using the sequential resonance assignment procedure. Several hydroxyl and sulfhydryl protons were observed at 41 degrees C at pH 8.3. Spin systems were sequentially assigned using phase-sensitive two-dimensional-correlated spectroscopy and phase-sensitive nuclear Overhauser enhancement spectroscopy. Spectra of the protein in H2O and of protein preparations either completely or partly exchanged against 2H2O were obtained. Use of the fast electron shuttle between the paramagnetic semiquinone and the diamagnetic hydroquinone state greatly simplified the NMR spectra, making it possible to assign easily the 1H resonances of amino acid residues located in the immediate neighbourhood of the isoalloxazine ring. The majority of the nuclear Overhauser effect contracts between the flavin and the apoprotein correspond to the crystal structure of the flavin domain of Clostridium MP flavodoxin, but differences are also observed. The assignments provide the basis for the structure determination of M. elsdenii flavodoxin in the reduced state as well as for assigning the resonances of the oxidized flavodoxin.  相似文献   

4.
5.
The 1H nuclear magnetic resonance spectrum of the tetradecapeptide, bombesin, has been assigned in (2H6)dimethyl sulphoxide solution and aqueous solution using two-dimensional techniques. The chemical shifts in both solvents indicate that the molecule has little secondary structure and adopts a random coil conformation. A comparison is made between the spectra of various smaller bombesin fragments and the intact polypeptide.  相似文献   

6.
The tertiary structure of mouse epidermal growth factor (EGF) in solution (28 degrees C, pH 2.0) was studied by two-dimensional NMR spectroscopy. Proton-proton distance constraints derived from NOESY spectra were used to construct a mechanical molecular model of mouse EGF, which was subsequently checked by means of a preliminary distance geometry calculation. The chain-folds in the two structural domains of mouse EGF were very similar to those previously reported (Montelione et al. (1987) Proc. Natl. Acad. Sci. U.S. 84, 5226-5230). However, the relative orientations of the two domains were different. Because we could assign much more inter-domain NOEs, the relative orientations of the two domains were well determined in our model. The hollow between the two domains may function as a binding site for the EGF receptor.  相似文献   

7.
The solution conformation of a 21-residue vasoconstrictor peptide endothelin-1 (ET-1) in water-ethylene glycol has been determined by two-dimensional 1H-NMR spectroscopy and constrained molecular dynamics simulations. The N-terminus (residues 1-4) appears to undergo conformational averaging and no single structure consistent with the NMR constraints could be found for this region. Residues 5-8 form a turn, and residues 9-16 exist in a helical conformation. A flexible 'hinge' between residues 8-9 allows various orientations of the turn relative to the helix. Another 'hinge' at residue 17 connects the extended C-terminus to the bicyclic core region (residues 1-15). Residues important for binding and biological activity form a contiguous surface on one side of the helix, with the two disulfides extending from the other side of the helix.  相似文献   

8.
Neuronal bungarotoxin has previously been shown, using two-dimensional 1H NMR spectroscopy, to have a triple-stranded antiparallel beta-sheet structure which dimerizes in solution [Oswald, R.E., Sutcliffe, M.J., Bamberger, M., Loring, R.H., Braswell, E., & Dobson, C.M. (1991) Biochemistry 30, 4901-4909]. In this paper, structural calculations are described which use the 582 experimentally measured NOE restraints in conjunction with 27 phi-angle restraints from J-value measurements. The positions of the N-terminal region and C-terminal region were poorly defined in the calculated structures with respect to the remainder of the structure. The region of the structure containing the triple-stranded beta-sheet was, however, well defined and similar to that found in the structure of homologous alpha-bungarotoxin (45% amino acid identity). The experimental restraints did not result in a well-defined dimer interface region because of the small number of NOEs which could be identified in this region. An approach was therefore adopted which produced model structures based to varying degrees on the alpha-bungarotoxin structure. Fourteen different structures were generated in this manner and subsequently used as starting points for refinement using dynamical simulated annealing followed by restrained molecular dynamics. This approach, which combines NMR data and homologous model building, has enabled a family of structures to be proposed for the dimeric molecule. In particular, Phe49 has been identified as possibly playing an important role in dimer formation, this residue in one chain interacting with the corresponding residue in the adjacent chain.  相似文献   

9.
Pulse-radiolysis experiments were performed on solutions containing methyl or benzyl viologen and flavodoxin. Viologen radicals are formed after the pulse. The kinetics of the reaction of these radicals with flavodoxin were studied. The kinetics observed depend strongly on the concentration of oxidized viologen. Therefore one must conclude that a relatively stable intermediate is formed after the reduction of flavodoxin. The midpoint potential of the intermediate state is -(480 +/- 30) mV, and is hardly dependent on the pH between 7 and 9.2. Due to a conformational change (k2 approximately equal to 10(5)S-1) the intermediate state decays to the stable semiquinone form of flavodoxin. The delta G of the conformational change at pH 8 is about 29 kJ mol -1 (0.3 eV). This means that the upper limit for the pK of N-5 in the semiquinone form will be 13. The activation energy of the conformational change is 43 kJ mol -1 (0.45 eV). The reaction between methyl viologen radicals and the semiquinone of flavodoxin can be described by a normal bimolecular reaction. The reaction is diffusion-controlled with a forward rate constant of (7 +/- 1) X 10(8) M -1S -1 (pH 8, I = 55 mM). The midpoint potential of the semiquinone/hydroquinone was found to be -(408 +/- 5) mV. A consequence of the intermediate state is that flavodoxin (Fld) could be reduced by a two-electron process, the midpoint potential of which should be located between -440 mV less than Em (Fld/FldH-) less than -290 mV. The exact value will depend on the delta G of the conformational change between the fully reduced flavodoxin with its structure in the oxidized form and the fully reduced flavodoxin with its structure in the hydroquinone form. The conditions are discussed under which flavodoxin could behave as a two-electron donor.  相似文献   

10.
The self-complementary d(GGGGAGCTCCCC) dodecanucleotide cleavage by bleomycin occurs at G(4)pA(5) site rather than G(6)pC(7) site which is known as the preferential sequence. The molecular structure of this dodecamer is observed as the distorted B-DNA by the CD spectra and proton NMR measurements. Three-dimensional structures in solution evaluated by molecular dynamics calculations with inter proton distance restraints have the distorted form of the minor groove structure at G(6)pC(7) site. These evidences offer the recognition mechanism model of the DNA base sequence by bleomycin.  相似文献   

11.
Structures have been determined for a potent analogue of vasoactive intestinal peptide (VIP), Ac-[Lys12, Lys14, Nle17, Val26, Thr28]VIP (VIP'), in methanol/water solutions. In CD studies, both VIP and VIP' were helical in methanol/water, with the percentage of alpha-helix increasing with percentage methanol. The pH had little effect on the structure. Complete 1H NMR assignments were made for VIP' in 25% methanol at pH 4 and 6 and in 50% methanol at pH 6, using two-dimensional COSY, NOESY, and relay-COSY experiments. There were no widespread changes in chemical shifts between the samples at pH 4 and 6; however, widespread changes were observed between the samples in 25% and 50% methanol. Complete sets of NOEs were obtained for VIP' in 25% methanol, pH 4, and in 50% methanol, pH 6. These NOEs were converted into distance constraints and applied in molecular dynamics and energy minimization calculations using the program CHARMM. A set of low-energy structures was obtained for VIP' in each solvent system. In 25% methanol, VIP' has two helical segments at residues 9-17 and 23-28. The remainder of the structure is not well determined. In 50% methanol, residues 8-26 form a regular, well-defined alpha-helix and residues 5-8 form a type III beta-turn. The remaining residues are not ordered. These structural assessments agree with the CD data. In the lowest energy structure in 50% methanol, the side chains of Asp3, Phe6, Thr7, and Tyr10 are clustered together--these residues are conserved throughout the family of peptide hormones homologous to VIP.  相似文献   

12.
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands.  相似文献   

13.
The solution conformation of des-(B26-B30)-insulin (DPI) has been investigated by 1H-NMR spectroscopy. A set of 250 approximate interproton distance restraints, derived from two-dimensional nuclear Overhauser enhancement spectra, were used as the basis of a structure determination using distance geometry (DG) and distance-bound driven dynamics (DDD). Sixteen DG structures were optimized using energy minimization (EM) and submitted to short 5-ps restrained molecular dynamics (RMD) simulations. A further refinement of the DDD structure with the lowest distance errors was done by energy minimization, a prolonged RMD simulation in vacuo and a time-averaged RMD simulation. An average structure was obtained from a trajectory generated during 20-ps RMD. The final structure was compared with the des-(B26-B30)-insulin crystal structure refined by molecular dynamics and the 2-Zn crystal structure of porcine insulin. This comparison shows that the overall structure of des-(B26-B30)-insulin is retained in solution with respect to the crystal structures with a high flexibility at the N-terminal part of the A chain and at the N-terminal and C-terminal parts of the B chain. In the RMD run a high mobility of Gly A1, Asn A21 and of the side chain of Phe B25 is noticed. One of the conformations adopted by des-(B26-B30)-insulin in solution is similar to that of molecule 1 (Chinese nomenclature) in the crystal structure of porcine insulin.  相似文献   

14.
Solution conformation of self-complementary DNA duplex d-CGATCG, containing 5' d-CpG 3' site for intercalation of anticancer drug, daunomycin and adriamycin, has been investigated by nuclear magnetic resonance (NMR) spectroscopy. Complete resonance assignments of all the protons (except some H5'/H5" protons) have been obtained following standard procedures based on double quantum filtered correlation spectroscopy (dQF COSY) and two-dimensional nuclear Overhauser effect (NOE) spectra. Analysis of sums of coupling constants in one-dimensional NMR spectra, cross peak patterns in dQF COSY spectra and inter proton distances shows that the DNA sequence assumes a conformation close to the B-DNA family. The deoxyribose sugar conformation is in dynamic equilibrium with predominantly S-type conformer and a minor N-type conformer with N<-->S equilibrium varying with temperature. At 325 K, the mole fraction of the N-conformer increases for some of the residues by approximately 9%. Using a total of 10 spin-spin coupling constants and 112 NOE intensities, structural refinement has been carried out using Restrained Molecular Dynamics (rMD) with different starting structures, potential functions and rMD protocols. It is observed that pseudorotation phase angle of deoxyribose sugar for A3 and T4 residues is approximately 180 degrees and approximately 120 degrees, respectively while all other residues are close to C2'endo-conformation. A large propeller twist (approximately -18 degrees) and smallest twist angle (approximately 31 degrees) at A3pT4 step, in the middle of the sequence, a wider (12 A) and shallower (3.0 A) major groove with glycosidic bond rotation as high anti at both the ends of hexanucleotide are observed. The structure shows base-sequence dependent variations and hence strong local structural heterogeneity, which may have implications in ligand binding.  相似文献   

15.
The structure of human calcitonin gene-related peptide 1 (hCGRP-1) has been determined by 1H NMR in a mixed-solvent system of 50% trifluoroethanol/50% H2O at pH 3.7 and 27 degrees C. Complete resonance assignment was achieved by using two-dimensional methods. Distance restraints for structure calculations were obtained by semiquantitative analysis of intra- and interresidue nuclear Overhauser effects; in addition, stereospecific or X1 rotamer assignments were obtained for certain side chains. Structures were generated from the distance restraints by distance geometry, followed by refinement using molecular dynamics, and were compared with experimental NH-C alpha H coupling constants and amide hydrogen exchange data. The structure of hCGRP-1 in this solvent comprises an amino-terminal disulfide-bonded loop (residues 2-7) leading into a well-defined alpha-helix between residues 8 and 18; thereafter, the structure is predominantly disordered, although there are indications of a preference for a turn-type conformation between residues 19 and 21. Comparison of spectra for the homologous hCGRP-2 with those of hCGRP-1 indicates that the conformations of these two forms are essentially identical.  相似文献   

16.
H Kessler  S Mronga  G Müller  L Moroder  R Huber 《Biopolymers》1991,31(10):1189-1204
The hinge region links the antigen binding Fab part to the constant Fc domain in immunoglobulins. For the hinge peptide derivative [AcThr(OtBu)-Cys-Pro-Pro-Cys-Pro-Ala-ProNH2]2 the assignment of the 1H and 13C resonances was achieved by two-dimensional nmr techniques: total correlation spectroscopy (TOCSY), nuclear Overhauser enhancement spectroscopy (NOESY), rotating frame nuclear Overhauser enhancement spectroscopy (ROESY), heteronuclear multiple quantum coherence (HMQC) transfer, and a HSQC (modified Overbodenhausen experiment) with high resolution in F1, which was several times folded in F1 but still phase correctable. Conformational relevant parameters (78 nuclear Overhauser effect distance restraints, 3JHH for prochiral assignments, temperature gradients) were determined by nmr and served as input data for molecular dynamics (MD) structure refinement. A simulated model compound corresponding to the [Cys-Pro-Pro-Cys]2 core elongated by the peptide chains in the Fab and Fc direction served as a starting structure for the final MD run. The conformation calculated in in vacuo does not agree with the C2 symmetry required from nmr data, but the structure obtained by a water simulation fulfills the requirement. Here the core of the hinge peptide derivative adopts a polyproline II double helix as in the x-ray structure of IgG1. Hence, segments responsible for the internal flexibility are located outside the core as confirmed by the flexibility of the solvent exposed C termini.  相似文献   

17.
J D Baleja  R T Pon  B D Sykes 《Biochemistry》1990,29(20):4828-4839
The structure of a DNA decamer comprising the left half of the OR3 operator from bacteriophage lambda is determined in solution by using nuclear magnetic resonance spectroscopy and restrained molecular mechanics calculations. Nuclear magnetic resonance assignments for nonexchangeable protons are obtained by two-dimensional correlated and nuclear Overhauser effect (NOE) spectroscopies. Exchangeable proton resonances are assigned by one-dimensional NOE experiments. Coupling constant measurements from one- and two-dimensional experiments are used to determine approximate dihedral angles within the deoxyribose ring. Distances between protons are estimated by extrapolating distances derived from the time-dependent NOE intensities to initial mixing times. The sets of dihedral angles and distances form a basis for structure determination by restrained molecular dynamics. Separate runs start from classical A and from B DNA and converge to essentially identical structures (atomic root mean square difference of 0.8 A). The structures are improved by NOE-based refinement in which observed NOE intensities are compared to those calculated by using a full matrix analysis procedure. Final NOE residual (R) factors were less than 0.19. The resultant structures are generally B type in character, but display local sequence-dependent variations in dihedral angles and in the spatial arrangement of adjacent base pairs. Although the entire structure exhibits a small bend, the central core of the half-operator, which comprises the sequence-specific recognition site for cro repressor, is straight.  相似文献   

18.
The binding characteristics of Hoechst 33258 (1), a synthetic bis-benzimidazole, and its structural analog 2, with one of the benzimidazoles replaced by a pyridoimidazole, to the self-complementary decadeoxyribonucleotide sequences d(CGCAATTGCG)2 (A) and d-(CATGGCCATG)2 (B) respectively, were examined using high field 1H-NMR techniques. Selective complexation induced chemical shift changes, the presence of exchange signals and intermolecular NOE contacts between the ligands and the minor groove protons of the oligonucleotides suggest the preferred binding sites as the centrally located AATT segment for complex A1, and the CCAT segment for complex B2. The B-type conformations of the two DNA duplexes are preserved upon complexation, as confirmed by the 2D-NOESY based sequential connectivities involving DNA base and sugar protons. Close intermolecular NOE based contacts between the ligands and their respective DNA sequences were further refined to model the ligand-DNA complexes starting from the computer generated B-type structures for the oligonucleotides. Force field calculations of ligand-DNA interaction energies indicate a more favorable contribution from the van der Waals energy component in the case of complex A1 consistent with its stronger net binding compared with the complex B2. Overall, the incorporation of a pyridinic nitrogen in Hoechst 33258 structure alters its selectivity for base pair recognition from A.T to G.C, resulting largely from the formation of a hydrogen bond between the new basic center and the 2-NH2 group of a guanosine moiety. The rates for the exchange of ligands between the two equivalent binding sites (AATT for 1, and CCAT for 2) of the self-complementary DNA sequences, are estimated from analyses of coalescence of NMR signals to be 189s-1 at 301 K for A1 and 79s-1 at 297 K for B2; which correspond to delta G++ of 13.8 and 18.6 kcal.mol-1 respectively.  相似文献   

19.
Solution conformation of the cyclic hexapeptide sequence, [cyclo-S-Cys-Tyr-Ile-Gln-Asn-Cys-S] (CYIQNC) – a disulfide-linked fragment of a neurohypophyseal peptide hormone oxytocin (OT) – has been investigated by high-field one-dimensional (1D) and two-dimensional (2D) NMR spectroscopic methods and compared with the results obtained from computer simulation studies. 1H-NMR results based on temperature dependence of amide proton chemical shifts and nuclear Overhauser effect indicate that peptide in solution populates different conformations, characterized by two fused β-turns. The segment Ile3-Gln4-Asn5-Cys6 yields a preferred type-III β-turn at residues 4, 5 (HB, 3HN → 6CO), while the segment Cys6, Cys1-Tyr2-Ile3 exhibits inherently weaker, flexible β-turn either of type I/II’/III/half-turn at residues 1, 2 (HB, 6HN → 3CO). The computer simulation studies using a mixed protocol of distance geometry-simulated annealing followed by constrained minimization, restrained molecular dynamics, and energy minimization showed the possibility of existence of additional conformations with the hydrogen bonds, (a) 5HN → 3CO and (b) 2HN → 6CO. These results, therefore, indicate that the additional conformations obtained from both NMR and simulation studies can also be possible to the peptide. These additional conformations might have very small population in the solution and did not show their signatures in these conditions. These findings will be helpful in designing more analogs with modifications in the cyclic moiety of OT.  相似文献   

20.
The gene for the electron-transfer protein flavodoxin has been cloned from Megasphaera elsdenii using the polymerase chain reaction. The recombinant gene was sequenced, expressed in an Escherichia coli expression system, and the recombinant protein purified and characterized. With the exception of an additional methionine residue at the N-terminus, the physico-chemical properties of the protein, including its optical spectrum and oxidation-reduction properties, are very similar to those of native flavodoxin. A site-directed mutant, E60Q, was made to investigate the effects of removing the negatively charged group that is nearest to N(1) of the bound FMN. The absorbance maximum in the visible region of the bound flavin moves from 446 to 453 nm. The midpoint oxidation-reduction potential at pH 7 for reduction of oxidized flavodoxin to the semiquinone E2 becomes more negative, decreasing from -114 to -242 mV; E1, the potential for reduction of semiquinone to the hydroquinone, becomes less negative, increasing from -373 mV to -271 mV. A redox-linked pKa associated with the hydroquinone is decreased from 5.8 to < or = 4.3. The spectra of the hydroquinones of wild-type and mutant proteins depend on pH (apparent pKa values of 5.8 and < or = 5.2, respectively). The complexes of apoprotein and all three redox forms of FMN are much weaker for the mutant, with the greatest effect occurring when the flavin is in the semiquinone form. These results suggest that glutamate 60 plays a major role in control of the redox properties of M. elsdenii flavodoxin, and they provide experimental support to an earlier proposal that the carboxylate on its side-chain is associated with the redox-linked pKa of 5.8 in the hydroquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号