首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the vermicomposting of paper mill sludge, the activity of earthworms is very dependent on dietetic polysaccharides including cellulose as energy sources. Most of these polymers are degraded by the host microbiota and considered potentially important source for cellulolytic enzymes. In the present study, a metagenomic library was constructed from vermicompost (VC) prepared with paper mill sludge and dairy sludge (fresh sludge, FS) and functionally screened for cellulolytic activities. Eighteen cellulase expressing clones were isolated from about 89,000 fosmid clones libraries. A short fragment library was constructed from the most active positive clone (cMGL504) and one open reading frame (ORF) of 1,092 bp encoding an endo-β-1,4-glucanase was indentified which showed 88% similarity with Cellvibrio mixtus cellulase A gene. The endo-β-1,4-glucanase cmgl504 gene was overexpressed in Escherichia coli. The purified recombinant cmgl504 cellulase displayed activities at a broad range of temperature (25–55°C) and pH (5.5–8.5). The enzyme degraded carboxymethyl cellulose (CMC) with 15.4 U, while having low activity against avicel. No detectable activity was found for xylan and laminarin. The enzyme activity was stimulated by potassium chloride. The deduced protein and three-dimensional structure of metagenome-derived cellulase cmgl504 possessed all features, including general architecture, signature motifs, and N-terminal signal peptide, followed by the catalytic domain of cellulase belonging to glycosyl hydrolase family 5 (GHF5). The cellulases cloned in this work may play important roles in the degradation of celluloses in vermicomposting process and could be exploited for industrial application in future.  相似文献   

2.
E Morag  I Halevy  E A Bayer    R Lamed 《Journal of bacteriology》1991,173(13):4155-4162
In the anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum, efficient solubilization of the insoluble cellulose substrate is accomplished largely through the action of a cellulose-binding multienzyme complex, the cellulosome. A major cellobiohydrolase activity from the cellulosome has been traced to its Mr 75,000 S8 subunit, and an active fragment of this subunit was prepared by a novel procedure involving limited proteolytic cleavage. The truncated Mr 68,000 fragment, termed S8-tr, was purified by gel filtration and high-performance ion-exchange chromatography. The purified protein adsorbed weakly to amorphous cellulose, and its enzymatic action yielded cellobiose as the major end product from both amorphous and crystalline cellulose preparations. The high ratio of exo- to endo-beta-glucanase activities was supported by viscosimetric measurements. The use of model substrates showed that the smallest cellodextrin to be degraded was cellotetraose, but cellopentaose was degraded at a much greater rate. Cellobiose dramatically inhibited the cellulolytic activities. In the absence of calcium or other bivalent metal ions, both the truncated cellobiohydrolase activity of S8-tr and the true cellulase activity of the parent cellulosome were relatively unstable at temperatures above 50 degrees C. Cysteine further enhanced the stabilizing effect of calcium. This is the first report of a defined cellobiohydrolase in C. thermocellum. Its association with the cellulosome and the correspondence of several of their major distinctive properties suggest that this cellobiohydrolase plays a key role in the solubilization of cellulose by the intact cellulosomal complex.  相似文献   

3.
Several microorganisms, isolated from a biodeteriorated paint sample, were screened for their ability to produce cellulolytic enzymes. Graphium putredinis (Corda) Hughes, isolated from a polyvinyl proprionate acrylate-based latex paint, was found to produce extracellular cellulolytic enzymes, which were capable of degrading the cellulose ether thickeners, carboxymethyl- and hydroxyethyl-cellulose. The optimisation of growth conditions for cellulase production from this fungus was investigated. Some properties of the crude enzyme were studied, including pH stability, temperature stability, activity/pH profile and temperature/activity profile. These properties are discussed in relation to the in-can environment of the latex paint.  相似文献   

4.
Four β-1,4-glucanases (cellulases) of the cellulolytic bacterium Cellulomonas fimi were purified from Escherichia coli cells transformed with recombinant plasmids. Previous analyses using soluble substrates had suggested that CenA and CenC were endoglucanases while CbhA and CbhB resembled the exo-acting cellobiohydrolases produced by cellulolytic fungi. Analysis of molecular size distributions during cellulose hydrolysis by the individual enzymes confirmed these preliminary findings and provided further evidence that endoglucanase CenC has a more processive hydrolytic activity than CenA. The significant differences between the size distributions obtained during hydrolysis of bacterial microcrystalline cellulose and acid-swollen cellulose can be explained in terms of the accessibility of β-1,4-glucan chains to enzyme attack. Endoglucanases and cellobiohydrolases were much more easily distinguished when the acid-swollen substrate was used.  相似文献   

5.
Streptomyces reticuli is able to grow efficiently with crystalline cellulose (Avicel) as the sole carbon source. Cultivation in the presence of the nonionic detergent Tween 80 at a concentration of 0.1% led to a 10-fold increase in extracellular cellulolytic activity. Under these conditions, one single 82-kDa cellulase (Avicelase) capable of degrading crystalline and soluble cellulose as well as cellodextrins and p-nitrophenylcellobioside was purified to apparent homogeneity by a procedure which consisted of two consecutive anion-exchange chromatographies followed by chromatofocusing. Aggregation, which was a major problem during protein purification, could be avoided by including Triton X-100 at a concentration of 0.1% in every chromatographic step. The Avicelase was identified in extracellular and mycelium-associated forms, the latter of which could be released efficiently by nonionic detergents. In addition, a 42-kDa truncated form retaining cellulolytic activity was identified which had been generated from the 82-kDa enzyme by a protease. Antibodies raised against the mycelium-associated Avicelase reacted with the 42-kDa derivative and the extracellular form. The mycelial association of the enzyme was confirmed by immunofluorescence and immunoelectron microscopies.  相似文献   

6.
Reducing cellulase cost remains a major challenge for lignocellulose to fuel and chemical industries. In this study, mutants of a novel wild-type cellulolytic fungal strain Talaromyces pinophilus OPC4-1 were developed by consecutive UV irradiation, N-methyl-N`-nitro-N-nitrosoguanidine (NTG) and ethylmethane sulfonate (EMS) treatment. A potential mutant EMM was obtained and displayed enhanced cellulase production. Using Solka Floc cellulose as the substrate, through fed-batch fermentation, mutant strain T. pinophilus EMM generated crude enzymes with an FPase activity of 27.0 IU/mL and yield of 900 IU/g substrate. When corncob powder was used, strain EMM produced crude enzymes with an FPase activity of 7.3 IU/mL and yield of 243.3 IU/g substrate. In addition, EMM crude enzymes contained 29.2 and 16.3 IU/mL β-glucosidase on Solka Floc cellulose and corncob power, respectively. The crude enzymes consequently displayed strong biomass hydrolysis performance. For corncob hydrolysis, without supplement of any commercial enzymes, glucose yields of 591.7 and 548.6 mg/g biomass were obtained using enzymes produced from Solka Floc cellulose and corncob powder, respectively. It was 553.9 mg/g biomass using the commercial enzyme mixture of Celluclast 1.5 L and Novozyme 188. Strain T. pinophilus EMM was therefore a potential fungus for on-site enzyme production in biorefinery processes.  相似文献   

7.
The enzymatic composition of the cellulosomes produced by Clostridium cellulolyticum was modified by inhibiting the synthesis of Cel48F that is the major cellulase of the cellulosomes. The strain ATCC 35319 (pSOSasrF) was developed to over-produce a 469 nucleotide-long antisense-RNA (asRNA) directed against the ribosome-binding site region and the beginning of the coding region of the cel48F mRNAs. The cellulolytic system secreted by the asRNA-producing strain showed a markedly lower amount of Cel48F, compared to the control strain transformed with the empty plasmid (pSOSzero). This was correlated with a 30% decrease of the specific activity of the cellulolytic system on Avicel cellulose, indicating that Cel48F plays an important role in the recalcitrant cellulose degradation. However, only minor effects were observed on the growth parameters on cellulose. In both transformant strains, cellulosome production was found to be reduced and two unknown proteins (P105 and P98) appeared as major components of their cellulolytic systems. These proteins did not contain any dockerin domain and were shown to be not included into the cellulosomes; they are expected to participate to the non-cellulosomal cellulolytic system of C. cellulolyticum.  相似文献   

8.
The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino acids that is unrelated to known protein sequences. EndB (808 amino acids) also contains a catalytic domain belonging to glycoside hydrolase family 44 and a C-terminal dockerin-like domain. Purified EndB is also shown to bind specifically via its dockerin domain to a polypeptide of ca. 130 kDa present among supernatant proteins from Avicel-grown R. flavefaciens that attach to cellulose. The protein to which EndB attaches is a strong candidate for the scaffolding component of a cellulosome-like multienzyme complex recently identified in this species (S.-Y. Ding et al., J. Bacteriol. 183:1945–1953, 2001). It is concluded that binding of EndB to cellulose may occur both through its own CBM and potentially also through its involvement in a cellulosome complex.  相似文献   

9.
An active strain of Aspergillus spp. has been selected for the production of cellulolytic enzymes and proteins when grown on peracetic acid-treated wheat straw. This strain produced a considerable amount of cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] in the extracellular supernatant and exhibited good overall cellulolytic activity, as measured using filter paper and Avicel as substrates. Also, under the same conditions the strain showed high activities of β-d-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) and β-d-xylosidase (1,4-β-d-xylan xylohydrolase, EC 3.2.1.37). The maximum enzyme yields (carboxymethylcellulose activity 26.4 units ml?1, filter paper activity 2.26 units ml?1 and Avicel activity 16.82 units ml?1; β-d-glucosidase 9.09 units ml?1 and β-d-xylosidase 1.92 units ml?1) were obtained after 96 h incubation at 45°C.  相似文献   

10.
Cryptococcus sp. S-2 carboxymethyl cellulase (CSCMCase) is active in the acidic pH and lacks a binding domain. The absence of the binding domain makes the enzyme inefficient against insoluble cellulosic substrates. To enhance its binding affinity and its cellulolytic activity to insoluble cellulosic substrates, cellulose binding domain (CBD) of cellobiohydrolase I (CBHI) from Trichoderma reesei belonging to carbohydrate binding module (CBM) family 1 was fused at the C-terminus of CSCMCase. The constructed fusion enzymes (CSCMCase-CBD and CSCMCase-2CBD) were expressed in a newly recombinant expression system of Cryptococcus sp. S-2, purified to homogeneity, and then subject to detailed characterization. The recombinant fusion enzymes displayed optimal pH similar to those of the native enzyme. Compared with rCSCMCase, the recombinant fusion enzymes had acquired an increased binding affinity to insoluble cellulose and the cellulolytic activity toward insoluble cellulosic substrates (SIGMACELL® and Avicel) was higher than that of native enzyme, confirming the presence of CBDs improve the binding and the cellulolytic activity of CSCMCase on insoluble substrates. This attribute should make CSCMCase an attractive applicant for various application.  相似文献   

11.
CelS is the most abundant subunit and an exoglucanase component of the Clostridium thermocellum cellulosome, multicomponent cellulase complex. The product inhibition pattern of CelS was examined using purified recombinant CelS (rCelS) produced in Escherichia coli. The rCelS activity on cellopentaose was strongly inhibited by cellobiose. The rCelS activity was also inhibited by lactose. Glucose was only marginally inhibitory. Cellobiose appeared to inhibit the rCelS activity through a competitive mechanism. The inhibition was relieved when -glucosidase was added, presumably because of the conversion of cellobiose into glucose. These hydrolysis product inhibition patterns are consistent with those of the crude enzyme (cellulosome), suggesting that CelS is a rate-limiting factor in the activity of the cellulosome.  相似文献   

12.
Trichoderma viride 1,4-β-d-glucan cellobiohydrolase (exo-cellobiohydrolase, 1,4-β-d-glucan cellobiohydrolase, EC 3.2.1.91) purified from a commercial product to electrophoretic homogeneity by a procedure including affinity and DEAE-Sephadex chromatography, has attached carbohydrates in addition to the glycoprotein constituents. These carbohydrates are lost by consecutive gel filtration steps in Sephadex G-25 columns, whereupon there is a rapid increase in enzymatic activity. A single gel filtration step can eliminate d-glucose or cellobiose added to a solution of this enzyme, but not the carbohydrates attached during incubation with Avicel.After free carbohydrate elimination from crude cellulase complexes by Sephadex G-25 chromatography, liberation of d-glucose following incubation at 50°C and pH 4.8 was observed. This indicates that some carbohydrates remain bound after gel filtration. The elimination of carbohydrate from whole cellulase complex [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] was favoured by a yeast treatment, with a simultaneous increase in activity, but the process is not reproducible, as a secondary inactivation process exists.  相似文献   

13.
The genome of Clostridium cellulolyticum encodes 13 GH9 enzymes that display seven distinct domain organizations. All but one contain a dockerin module and were formerly detected in the cellulosomes, but only three of them were previously studied (Cel9E, Cel9G, and Cel9M). In this study, the 10 uncharacterized GH9 enzymes were overproduced in Escherichia coli and purified, and their activity pattern was investigated in the free state or in cellulosome chimeras with key cellulosomal cellulases. The newly purified GH9 enzymes, including those that share similar organization, all exhibited distinct activity patterns, various binding capacities on cellulosic substrates, and different synergies with pivotal cellulases in mini-cellulosomes. Furthermore, one enzyme (Cel9X) was characterized as the first genuine endoxyloglucanase belonging to this family, with no activity on soluble and insoluble celluloses. Another GH9 enzyme (Cel9V), whose sequence is 78% identical to the cellulosomal cellulase Cel9E, was found inactive in the free and complexed states on all tested substrates. The sole noncellulosomal GH9 (Cel9W) is a cellulase displaying a broad substrate specificity, whose engineered form bearing a dockerin can act synergistically in minicomplexes. Finally, incorporation of all GH9 cellulases in trivalent cellulosome chimera containing Cel48F and Cel9G generated a mixture of heterogeneous mini-cellulosomes that exhibit more activity on crystalline cellulose than the best homogeneous tri-functional complex. Altogether, our data emphasize the importance of GH9 diversity in bacterial cellulosomes, confirm that Cel9G is the most synergistic GH9 with the major endoprocessive cellulase Cel48F, but also identify Cel9U as an important cellulosomal component during cellulose depolymerization.  相似文献   

14.
Two forms of filter paper activity (filter paper activity; cellulose 1,4-β-cellobiosidase, EC 3.2.1.91) and single forms of CM-cellulase (carboxymethyl cellulase; endo-l,4-β-glucanase, EC 3.2.1.4) and β-glucosidase (β-D-glucoside glucohydrolase, EC 3.2.1.21) from the culture filtrate ofTrichoderma harzianum were separated and partially purified by (NH4)2SO4 precipitation, ion-exchange chromatography and gel filtration. The final preparation was purified about 12-, 20- and 27-fold for FP-activity, CM-oellulase and β-glueosidase, respectively. The pH and temperature optima, stability, kinetic parameters, effeet of metal ions and molar mass of each was determined. A distinct type of synergistic action between cellulase components was observed for efficientin vitro saccharification of dewaxed cotton.  相似文献   

15.
Summary The mode of action of the cellulolytic enzymes of two strong cellulose decomposing fungi, Penicillium oxalicum Curie et Thom and Helminthosporium cyclops Drechsler, was studied. The culture filtrates and enzyme preparations obtained from them showed high cellulase activity and very weak cellobiase activity. The cellulolytic system of both experimental organisms seems to be multicomponent. The cellulase component showed its activity mainly extracellulary and the cellobiase component, mainly intracellulary. It seems, therefore, that during growth of both fungi on a cellulose medium, the extracellular cellulase acts hydrolytically on the cellulose substrate forming cellobiose which is further acted upon by intracellular cellobiase to form glucose. Paper chromatographic assay of the products of the enzymatic reaction sub-stantiated this conclusion.  相似文献   

16.
Bacteria and fungi are thought to degrade cellulose through the activity of either a complexed or a noncomplexed cellulolytic system composed of endoglucanases and cellobiohydrolases. The marine bacterium Saccharophagus degradans 2-40 produces a multicomponent cellulolytic system that is unusual in its abundance of GH5-containing endoglucanases. Secreted enzymes of this bacterium release high levels of cellobiose from cellulosic materials. Through cloning and purification, the predicted biochemical activities of the one annotated cellobiohydrolase Cel6A and the GH5-containing endoglucanases were evaluated. Cel6A was shown to be a classic endoglucanase, but Cel5H showed significantly higher activity on several types of cellulose, was the highest expressed, and processively released cellobiose from cellulosic substrates. Cel5G, Cel5H, and Cel5J were found to be members of a separate phylogenetic clade and were all shown to be processive. The processive endoglucanases are functionally equivalent to the endoglucanases and cellobiohydrolases required for other cellulolytic systems, thus providing a cellobiohydrolase-independent mechanism for this bacterium to convert cellulose to glucose.The microbial degradation of cellulose is of interest due to applications in the sugar-dependent production of alternative biofuels (25). There are well-characterized cellulolytic systems of bacteria and fungi that employ multiple endo-acting glucanases and exo-acting cellobiohydrolases in the degradation of cellulose (12). For example, the noncomplexed cellulase system of the wood soft rot fungus Hypocrea jecorina (anamorph Trichoderma reesei), the source for most commercially available cellulase preparations, produces up to eight secreted β-1,4-endoglucanases (Cel5A, Cel5B, Cel7B, Cel12A, Cel45A, Cel61A, Cel61B, and Cel61C), two cellobiohydrolases (Cel6A and Cel7A), and several β-glucosidases (e.g., Bgl3A) (21). Cellobiohydrolases are critical to the function of these systems, as, for example, Cel7A comprises in excess of 50% of the cellulases secreted by this organism (11). Another well-characterized noncomplexed cellulase system is found in Thermobifida fusca, a filamentous soil bacterium that is a major degrader of organic material found in compost piles (32). This bacterium also secretes several endoglucanases and end-specific cellobiohydrolases to degrade cellulose (32). An alternative mechanism for degradation of cellulose is found in microorganisms producing complexed cellulolytic systems, such as those found in cellulolytic clostridia. In these microorganisms, several β-1,4-endoglucanases and cellobiohydrolases assemble on surface-associated scaffoldin polypeptides to form cellulose-degrading multiprotein complexes known as cellulosomes (2, 6). The unifying theme in both complexed and noncomplexed systems is the importance of cellobiohydrolases in converting cellulose and cellodextrins to soluble cellobiose.Recently, a complete cellulolytic system was reported to occur in the marine bacterium Saccharophagus degradans 2-40 (28, 31). This bacterium is capable of growth on both crystalline and noncrystalline celluloses as sole carbon sources and produces multiple glucanases that can be detected in zymograms of cell lysates (28). The genome sequence of this bacterium predicts that the cellulolytic system of this bacterium consists of 10 GH5-containing β-1,4-endoglucanases (Cel5A, Cel5B, Cel5C, Cel5D, Cel5E, Cel5F, Cel5G, Cel5H, Cel5I, and Cel5J), two GH9 β-1,4-endoglucanases (Cel9A and Cel9B), one cellobiohydrolase (Cel6A), five β-glucosidases (Bgl1A, Bgl1B, Bgl3C, Ced3A, and Ced3B), and a cellobiose phosphorylase (Cep94A) (28, 31). The apparent absence of a homolog to a scaffoldin in the genome sequence and to dockerin-like domains in the proposed glucanases suggests that this bacterium produces a noncomplexed cellulolytic system. Two unusual features of this cellulolytic system are the large number of GH5 endoglucanases and the presence of only one annotated cellobiohydrolase, Cel6A (28, 31). The apparent deficiency of cellobiohydrolases in this system raised the question as to the mechanism by which this bacterium degrades cellulose.To understand the mechanism for degradation of cellulose, the biochemical activities for the predicted cellobiohydrolase Cel6A and each of the GH5 glucanases predicted for the S. degradans cellulolytic system were evaluated. Cel6A exhibited properties of a classic endoglucanase, but three of the originally annotated endoglucanases, Cel5G, Cel5H, and Cel5J, were shown to be processive, forming cellobiose as the end product. Processive endoglucanases substitute for cellobiohydrolases in this system to play a major role in the degradation of cellulose.  相似文献   

17.
Understanding the roles of the components of the multienzyme complex of the anaerobial cellulase system, acting on complex substrates, is crucial to the development of efficient cellulase systems for industrial applications such as converting lignocellulose to sugars for bioethanol production. In this study, we purified the multienzyme complex of Neocallimastix patriciarum J11 from a broth through cellulose affinity purification. The multienzyme complex is composed of at least 12 comprised proteins, based on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eight of these constituents have demonstrated β-glucanase activity on zymogram analysis. The multienzyme complex contained scaffoldings that respond to the gathering of the cellulolytic components. The levels and subunit ratio of the multienzyme complex from N. patriciarum J11 might have been affected by their utilized carbon sources, whereas the components of the complexes were consistent. The trypsin-digested peptides of six proteins were matched to the sequences of cellulases originating from rumen fungi, based on identification through liquid chromatography/mass spectrometry, revealing that at least three types of cellulase, including one endoglucanase and two exoglucanases, could be found in the multienzyme complex of N. patriciarum J11. The cellulolytic subunits could hydrolyze synergistically on both the internal bonds and the reducing and nonreducing ends of cellulose. Based on our research, our findings are the first to depict the composition of the multienzyme complex produced by N. patriciarum J11, and this complex is composed of scaffoldin and three types of cellulase.  相似文献   

18.
Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026   总被引:3,自引:0,他引:3  
Summary The cellulolytic activity of an alkaliphilic obligate anaerobic bacterium, Z-7026, which was isolated from the microbial community of soda-lake sediments and belongs to the cluster III of Clostridia with low G+C content, was studied. The bacterium was capable of growing in media with cellulose or cellobiose as the sole energy sources. Its maximal growth rate on cellobiose (0.042–0.046 h–1) was observed at an initial pH value of 8.5–9.0, whereas the maximal rate of cellulase synthesis, assayed by using a novel fluorimetric approach, was found to be 0.1 h–1 at pH 8–8.5. Secreted proteins revealed high affinity for cellulose and were represented by two major forms of molecular masses of 75 and 84 kDa, whereas the general protein composition of the precipitated and cellulose-bound preparations was similar to cellulosome subunits of Clostridium thermocellum. The optimum pH of the partially purified enzyme preparation towards both amorphous and crystalline cellulose was in the range 6–9, with more than 70% and less than 50% of maximal activity being retained at pH 9.2 and 5.0, respectively.  相似文献   

19.
Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds). In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai) were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa). Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase) and 2 ß-glucosidases (110K and 210K) were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU)-ß-glucoside, 4MU–ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K ß-glucosidase are the core components of the sea hare digestive system for efficient production of glucose from sea lettuce. These findings contribute important new insights into the development of biofuel processing biotechnologies from seaweed.  相似文献   

20.
The recombinant form of the cellulase CelF of Clostridium cellulolyticum, tagged by a C-terminal histine tail, was overproduced in Escherichia coli. The fusion protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The intact form of CelF (Mr, 79,000) was rapidly degraded at the C terminus, giving a shorter stable form, called truncated CelF (Mr, 71,000). Both the entire and the truncated purified forms degraded amorphous cellulose (kcat = 42 and 30 min(-1), respectively) and microcrystalline cellulose (kcat = 13 and 10 min(-1), respectively). The high ratio of soluble reducing ends to insoluble reducing ends released by truncated CelF from amorphous cellulose showed that CelF is a processive enzyme. Nevertheless, the diversity of the cellodextrins released by truncated CelF from phosphoric acid-swollen cellulose at the beginning of the reaction indicated that the enzyme might randomly hydrolyze beta-1,4 bonds. This hypothesis was supported by viscosimetric measurements and by the finding that CelF and the endoglucanase CelA are able to degrade some of the same cellulose sites. CelF was therefore called a processive endocellulase. The results of immunoblotting analysis showed that CelF was associated with the cellulosome of C. cellulolyticum. It was identified as one of the three major components of cellulosomes. The ability of the entire form of CelF to interact with CipC, the cellulosome integrating protein, or mini-CipC1, a recombinant truncated form of CipC, was monitored by interaction Western blotting (immunoblotting) and by binding assays using a BIAcore biosensor-based analytical system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号