首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonsurgical embryo recovery was attempted from light-horse and draft mares. Embryo recovery rates were not affected (P>.05) by technician or stallion but were lower (P<.05) from draft mares (44%) than light-horse mares (67%). Sham transfer of embryos on day 8 post-ovulation did not (P>.05) increase the number of mares returning to estrus by 22 days post-ovulation. Method of embryo transfer greatly affected pregnancy rates. Embryos transferred surgically during March–June resulted in 0 of 12 pregnancies versus 13 of 25 pregnancies obtained during July–September, This strongly suggests a seasonal influence on pregnancy rates. Technician influenced (P<.05) the success of nonsurgical transfer (46.2% vs. 7.7%). In addition, protection of the insemination rod with a sheath (guarded method) appeared to provide some advantage over an unguarded method of nonsurgical transfer (54% vs. 23%). Lastly, a preliminary experiment was conducted to evaluate transfer of embryos via flank incision. Four of 5 embryos transferred by this method resulted in a pregnancy at 50 days post estrus.  相似文献   

2.
The fertility of frozen-thawed and fresh semen from each of three stallions was compared in an experiment with a randomized block design using 128 mares. Semen was collected every third day, extended in lactose-EDTA-egg yolk extender at a concentration of 500 × 106 progressively motile sperm per 1.0 ml, and frozen in individual-dose, 1.0-ml straws (1.9 mm × 267 mm). The same stallions were collected daily for inseminations with fresh semen. For each insemination dose with fresh semen, 300 × 106 progressively motile sperm were added to 10 ml of heated skim milk extender. Mares were inseminated daily from the second day of estrus through the end of estrus. Of 52 ejaculates processed and frozen, 38% were discarded because < 35% of the sperm were progressively motile after thawing. Based on rectal palpations on day 50 post-ovulation, pregnancy rates for inseminations during one estrus to semen from the three stallions were 17, 33 and 35% for frozen-thawed semen and 60, 62 and 64% for fresh semen. Pregnancy rates with frozen semen from two of the three stallions were 54% of the rates attained with fresh semen.  相似文献   

3.
4.
T. Raz  C. Card 《Theriogenology》2009,72(2):169-178
Reliable methods of regulating estrus and stimulating superovulations in equine embryo transfer programs are desirable. Our objectives were to investigate the efficacy of a progesterone and estradiol-17β (P&E) estrus synchronization regimen in mares with and without subsequent equine follicle-stimulating hormone (eFSH) treatment and to examine the effects of eFSH on folliculogenesis and embryo production. Cycling mares were treated with P&E daily for 10 d. On the final P&E treatment day, prostaglandin F was administered, and mares were randomly assigned to one of two treatment groups (n = 20 mares/group). In both groups, mares were examined daily by transrectal ultrasonography. In the eFSH group, twice-daily eFSH treatments were initiated at follicle diameter 20 to 25 mm and ceased at follicle ≥35 mm; human chorionic gonadotrophin (hCG) was administered after 36 h. In the control group, eFSH treatments were not given, but hCG was administered at follicle ≥35 mm. Mares were inseminated with fresh semen, and embryo recovery attempts were performed 8 d postovulation. Synchrony of ovulations within each group appeared to be similar. Six mares in the eFSH group failed to ovulate. The eFSH treatment resulted in higher (P < 0.05) numbers of preovulatory follicles and ovulations; however, embryo recovery rate did not increase (eFSH 1.0 ± 0.4 vs. control 0.95 ± 0.1 embryos/recovery attempt), and embryo per ovulation rate was significantly lower (36% vs. 73%). The eFSH-treated mares had significantly higher frequency of nonovulatory follicles (28% vs. 0) and higher periovulatory serum concentrations of estradiol-17β. Based on our findings, combined P&E and eFSH regimens cannot be recommended for cycling donor mares.  相似文献   

5.
6.
Sieme H  Bonk A  Hamann H  Klug E  Katila T 《Theriogenology》2004,62(5):915-928
The effects of different artificial insemination (AI) techniques and sperm doses on pregnancy rates of normal Hanoverian breed mares and mares with a history of barrenness or pregnancy failure using fresh or frozen-thawed sperm were investigated. The material included 187 normal mares (148 foaling and 39 young maiden mares) and 85 problem mares with abnormal reproductive history. Mares were randomly allotted into groups with respect to AI technique (routine AI into the uterine body, transrectally controlled deep intracornual AI ipsilateral to the preovulatory follicle, or hysteroscopic AI onto the uterotubal junction ipsilateral to the preovulatory follicle), storage method of semen (fresh, frozen-thawed), AI volume (0.5, 2, 12 ml), and sperm dose (50 x 10(6) or 300 x 10(6) progressively motile sperm (pms) for fresh semen and 100 or 800 x 10(6) frozen-thawed sperm with >35% post-thaw motility). The mares were inseminated once per cycle, 24 h after hCG administration when fresh semen was used, or 30 h for frozen-thawed semen. Differences in pregnancy rates between treatment groups were analyzed by Chi-squared test, and for most relevant factors (insemination technique, mare, semen, and stallion) expectation values and confidence intervals were calculated using multivariate logistic models. Neither insemination technique, volume, sperm dose, nor mare or stallion had significant effects (P > 0.05) on fertility. Type of semen, breeding mares during foal heat, and an interaction between insemination technique, semen parameters, and mares did have significant effects (P < 0.05). In problem mares, frozen semen AI yielded significantly lower pregnancy rates than fresh semen AI (16/43, 37.2% versus 25/42, 59.5%), but this was not the case in normal mares. In normal mares, hysteroscopic AI with fresh semen gave significantly (P < 0.05) better pregnancy rates than uterine body AI (27/38, 71% versus 18/38, 47.3%), whereas in problem mares this resulted in significantly lower pregnancy rates than uterine body AI (5/15, 33.3% versus 16/19, 84.2%). Our results demonstrate that for problem mares, conventional insemination into the uterine body appears to be superior to hysteroscopic insemination and in normal mares, the highest pregnancy rates can be expected by hysteroscopic insemination.  相似文献   

7.
Data were analysed retrospectively from fourteen breeding seasons at an Equine Fertility Clinic for the effect of interval between pre- and postovulatory examinations for immediate postovulatory insemination on pregnancy rate (PR) and embryo loss rate (ELR). Mares of various breeds and ages were examined at intervals which varied from 0.5 to 15h between the pre- and postovulatory period over 867 cycles. When ovulation was detected they were inseminated with a single dose of commercial frozen-thawed semen. All mares were treated in the post-insemination period with intrauterine antibiotics and then with oxytocin. Pregnancy diagnoses were made at 12-17 days post-ovulation and at intervals up to 40 days. The overall PR was 47.9%. The data were pooled into 3h examination intervals. In the first interval, mares were inseminated at the time of ovulation to 3h post-ovulation (n=44) with a PR of 43.2%. Results of insemination to consecutive 3h intervals gave PR of 44.7% (3-6h, n=150), 45.1% (6-9h, n=432), 55.8% (9-12h, n=190) and 54.9% (12-15h, n=51). ELR was 10.5%, 11.9%, 5.6%, 7.5% and 3.6% respectively for the same intervals. There was no statistical difference in either the PR or ELR. It is concluded that in a postovulatory insemination regime with routine post-insemination treatment as described, examination of mares at intervals of any less than 12-15h does not improve pregnancy or embryo loss rates.  相似文献   

8.
The objective was to evaluate the potential risks associated with embryo transfer from mares bred with equine arteritis virus (EAV) infective semen. Twenty-six mares were embryo donors, whereas 18 unvaccinated and EAV antibody seronegative mares were embryo recipients. Of the 26 donor mares, 15 were unvaccinated and seronegative for antibodies to EAV and 11 were vaccinated for the first time with a commercially available modified live virus vaccine against EVA before breeding and subsequent embryo transfer. All donor mares were bred with EAV-infective semen from a stallion persistently infected with the virus. Twenty-four embryos were recovered 7 d post-ovulation; all were subjected in sequential order to five washes in embryo flush medium, two trypsin treatments, and five additional washes in embryo flush medium (prior to transfer). Twelve and seven embryos (Grades 1 or 2) were transferred from the non-vaccinated and vaccinated donors, respectively, and pregnancy was established in 3 of 12 and 2 of 7. Perhaps trypsin reduced embryo viability and pregnancy rate. The uterine flush fluid of 11 mares (9 of 15 and 2 of 11 from non-vaccinated and vaccinated donor groups, respectively) was positive for EAV by VI (confirmed by real-time RT-PCR); the wash fluid from the embryos of nine of these mares was negative following 10 washes and two trypsin treatments. However, the embryo wash fluid from two mares was still positive for EAV after all 10 washes and the two trypsin treatments, and one embryo was positive for EAV. Two of 18 recipient mares had seroconverted to EAV 28 d after embryo transfer. Virus was not detected in any fetal tissues or fluids harvested after pregnancies were terminated (60 d). In conclusion, we inferred that the washing protocol of 10 washes and two trypsin treatments did not eliminate EAV from all embryos; due to limitations in experimental design, this requires confirmation. Furthermore, there may be a risk of EAV transmission associated with in vivo embryo transfer from a donor mare inseminated with EAV infective semen.  相似文献   

9.
The objective of this study was to investigate the inflammatory reaction induced in the equine uterus by insemination with fresh and frozen semen. Eleven groups (6 to 8 mares per group) were studied during 2 breeding seasons. The mares were inseminated using raw semen, frozen semen, extended fresh and frozen semen, concentrated fresh semen, seminal plasma and seminal extenders only. One group was bred naturally. Six hours after insemination, the uteri were flushed with 50 ml of phosphate-buffered saline (PBS). Seventeen out of 104 samples (16%) exhibited slight bacterial growth. Neutrophil concentrations were significantly (P < 0.05) higher in all treated mares than in the controls. Mares infused with PBS, seminal extenders or the supernatant from centrifuged frozen-thawed semen exhibited only a mild neutrophil response. Insemination with frozen semen resulted in higher neutrophil concentrations than insemination with extended fresh semen (means of 59 vs 5 million neutrophils/ml; P < 0.05). Highest neutrophil counts were found after insemination with frozen semen or concentrated fresh semen. Bacterial contamination of uteri was insignificant 6 hours after breeding. Neutrophilia seems to be induced by spermatozoa rather than bacteria. The intensity of the neutrophil reaction seems to depend on concentration and/or volume of inseminate.  相似文献   

10.
The freezability of stallion semen defined as the number of selected ejaculates/total number of ejaculates frozen from 161 different stallions was analyzed. Of the stallions, 19, 30, 27 and 24% had a freezability of 0%, 0 to 33%, 33 to 66%, over 66%, respectively In 85 different stallions, the correlation of freezability between first and second year was 0.60 (P < 0.001). The relationship between fertility with fresh and frozen semen and freezability was analyzed in 40 stallions whose freezability and fertility information was recorded during 5 years. There was a strong relationship between fertility of fresh semen and semen freezability (P < 0.001). However, the relationship between fertility of frozen semen and freezability was not as marked (P < 0.05). Analysis of the field fertility per cycle results when mares were bred with 300 or 150 x 10(6) total spermatozoa at different frequencies until ovulation indicated that mares that were inseminated 2 times or more per estrus show an improved fertility in comparison with mares inseminated only once (34%, n = 1576 vs 26%, n = 626; P < 0.001). Foaling rate when mares were inseminated with frozen semen (1858 mares during 8 breeding seasons) was mainly influenced by mare age (< 16 years: 54% vs >/= 16 years 42% p < 0.001). Date of first insemination (before May 15: 58% vs after May 15: 37%) also had a significant effect on foaling rate (P < 0.001).  相似文献   

11.
Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination.Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct.Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction.Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa.In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.  相似文献   

12.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

13.
The aim of the present study was to evaluate the effect of artificial insemination time (before or after ovulation) using either fresh or frozen-thawed boar semen on embryo viability and early pregnancy rate. Seventy-seven prepubertal crossbred (Landrace x Large White x Duroc) gilts were inseminated in 4 treatments. Artificial inseminations were performed 6 h either after (A) or before (B) ovulation using frozenthawed (A-frozen, n = 19; B-frozen, n = 19) or fresh semen (A-fresh, n = 21; B-fresh, n = 18). The gilts were induced to puberty by administration of 400 IU of eCG and 200 IU hCG (sc) followed by 500 IU of hCG (sc) 72 h later. Ovulation was predicted to occur 42 h after the second injection. All animals were slaughtered 96 h after AI. Embryos were collected and classified as viable (5- to 8-cells, morulae, compacted morulae and early blastocysts) and nonviable (fragmented, degenerated and 1- to 4-cell embryos). The total embryo viability rate was: 64.3% (A-frozen), 54.2% (A-fresh), 76.0% (B-frozen), 91.9% (B-fresh); (A-fresh vs B-fresh, P = 0.018; A-frozen vs B-frozen, P = 0.094). It was observed that AI before ovulation resulted in a higher percentage of total viable embryos than AI after ovulation (P = 0.041). The early pregnancy rate, defined as presence of at least one viable embryo, was 78.9, 80.9, 84.2 and 94.4% for A-frozen, A-fresh, B-frozen, B-fresh, respectively. There was no significant difference in the early pregnancy rate among groups. In conclusion, there was a detrimental effect upon total embryo viability rate when AI was performed after ovulation with either frozen-thawed or fresh semen. The total embryo viability rate and the early pregancy rate were not affected by AI with either frozen-thawed or fresh semen regardless of the time of AI.  相似文献   

14.
A total of 4109 does of a local Greek breed (Capra prisca) were synchronized with intravaginal MPA-sponges and PMSG, and 24 bucks of Alpine (n = 8), Saanen (n = 8) and Damascus (n = 8) breeds were used for studying the fertility of nonfrozen and frozen-thawed semen during the nonbreeding season (June to August). Artificial insemination (AI) was performed once (50 to 55 h after sponge withdrawal) or twice (36 and 60 h after sponge withdrawals with fresh semen (collected during the nonbreeding season, stored at 16 degrees C and inseminated within 6 h) or frozen semen (prepared from the same bucks during the preceding breeding season). The induction of estrus was successful, varying between 91.0 and 95.0%. The form of semen (fresh or frozen-thawed used for inseminating the synchronized does affected their fertility: the overall kidding rate with fresh semen (65.5%) was higher (P < 0.05) than that with frozen-thawed semen (53.4%). The fertility level was also affected by the number of inseminations performed: the overall kidding rate was significantly higher (P < 0.001) in the does inseminated twice with fresh or frozen-thawed semen (70.4 and 59. 1%, respectively) than in those inseminated only once (48.9 and 44.9%, respectively). Finally, the breed of the buck used for preparing the fresh or the frozen-thawed semen affected the fertility level of the does. The kidding rate was higher in does inseminated with fresh semen prepared from bucks of the Damascus breed than from bucks of Saanen or Alpine breed. However, when frozen-thawed semen was used the kidding rate was lower in does inseminated with semen prepared from bucks of the Damascus breed than from bucks of the Alpine or Saanen breed. It is concluded that the fresh semen of Alpine, Saanen and Damascus breed bucks, born and raised under the climate conditions prevailing in Greece (34 degrees to 41 degrees N), can be used successfully during the nonbreeding season (June to August) for inseminating does.  相似文献   

15.
The objectives were to compare embryo development rates after oocyte transfer with: (1) intrauterine or intraoviductal inseminations of fresh semen versus intraoviductal insemination of frozen semen; (2) intraoviductal versus intrauterine inseminations of cooled semen. In Experiment I, oocytes were transferred into the oviduct, and recipients were inseminated into the uterus with 1 x 10(9) fresh spermatozoa, or into the oviduct with 2 x 10(5) fresh or frozen-thawed spermatozoa. In Experiment II, semen was cooled to 5 degrees C before intrauterine insemination with 2 x 10(9) spermatozoa or intraoviductal inseminations of 2 x 10(5) spermatozoa (deposited with the oocytes). In Experiment I, embryo development rates were similar (P>0.05) for intrauterine versus intraoviductal inseminations when fresh semen was used (8/14, 57% and 9/11, 82%, respectively). However, embryo development rates were lower (P<0.05) when frozen spermatozoa were placed within the oviduct (1/12, 8%). In Experiment II, embryo development rates were higher (P<0.05) when cooled semen was used for intrauterine (19/23, 83%) versus intraoviductal (4/16, 25%) inseminations. We concluded that intraoviductal insemination can be successfully performed using fresh spermatozoa. However, the use of cooled and frozen spermatozoa for intraoviductal inseminations was less successful, and needs further investigation.  相似文献   

16.
A breeding trial was conducted to evaluate the effect of insemination timing on the fertility of mares bred with frozen/thawed equine semen. One stallion and 60 reproductively sound, estrous-synchronized mares were included in the study. Mares were assigned to one of three groups (n = 20): 1) insemination with fresh semen every other day during estrus from detection of a 35-mm follicle until ovulation, 2) insemination with frozen/thawed semen every day during estrus from detection of a 35-mm follicle until ovulation or 3) insemination with frozen/thawed semen once, within 6 h after ovulation. Single-cycle 18-d pregnancy rates resulting from insemination with fresh semen (70%), preovulation insemination with frozen/thawed semen (60%) and postovulation insemination with frozen/thawed semen (55%) were not different (P > 0.05). Possibly, equivalent pregnancy rates could be achieved with frozen/thawed semen using either daily inseminations until ovulation occurs or frequent ovarian palpations with a single post-ovulation insemination. Further studies regarding the effect of insemination timing on stallion fertility are needed since the present investigation included only one stallion and a small number of mares.  相似文献   

17.
Flow cytometry sex-sorting technology was developed in 1989. However, it is only the bovine species in which offspring of the desired sex are obtained at a commercial level. The aim of the present work was to evaluate efficiency parameters when using fresh sexed semen in a large-scale equine commercial embryo transfer program. During the 2009, 2010 and 2011 breeding seasons, 938 synchronized cycles were artificially inseminated. One hundred (10.6%) mares failed to ovulate, and for the remaining 838 useable cycles, 887 doses of sexed semen were used, representing 1.06 doses per cycle. In general, 435 (51.9%) out of 838 flushing performed resulted in the recovery of at least one embryo and 496 (59.1%) embryos were recovered, including twins and triplets. Pregnancy rate at 25 days achieved 81.5% (one embryo transferred per recipient). Embryo recovery rate was not statistically different either between preovulatory and postovulatory artificially inseminated mares or when increased quantities of sexed sperm per dose were used (15–45 million) (P > 0.05). A broad variation in embryo recovery rate was observed between the different stallions used in this study. Sex accuracy of the sex sorting assessed by ultrasound fetal sex determination was 90.3%. Finally, overall efficiency (female embryo pregnancies per useable cycles) was 39% (325/838), meaning that to obtain a female pregnancy of at least 75 days it was necessary to perform 2.5 flushing.  相似文献   

18.
One year old fillies are able to conceive but, usually, not to give birth to a living foal. Although embryo transfer allows the production of foals from mature mares with repeated pregnancy losses, no reports are available on the use of one year old fillies as embryo donors. To evaluate this possibility, eleven 12-16 months old Haflinger mares were inseminated with fresh semen and subjected to embryo recovery. Some of the recovered embryos were non-surgically transferred into synchronized mature recipients. Pregnancies were terminated using PGF2alpha at day 25. Fillies' embryo recovery rate and their recipients' pregnancy rate at day 25 were compared with those achieved in two years old and mature mares of the same breed, subjected to the same management. Embryo recovery rate was 21/44 (47.7%), 12/16 (75%) and 22/26 (84.6%) (P>0.01) for one year old, two years old and mature mares, respectively. Five/7 (71.4%) one year old donors' embryos resulted in a pregnancy after transfer and 4/7 (57.1%) developed until day 25. Significant differences in pregnancy rates after transfer between donors' age groups were not observed; no short term side effects resulted from the use of fillies as embryo donors. This study showed that one year old mares employed as embryo donors produce embryos both morphologically normal and able to develop in recipient mares at least up to day 25 of pregnancy.  相似文献   

19.
A total of 121 European fallow deer does, being either parous ( n = 15) or nulliparous ( n = 106), were treated with intravaginal progesterone impregnated controlled internal drug release (CIDR) devices for 14 days. The does were divided into three treatment groups and inseminated in utero by laparoscopy, at approximately 65 hours after CIDR device removal, with 25 × 106 fresh Mesopotamian ( n = 40), 25–35 × 106 frozen-thawed Mesopotamian ( n = 41) or 30–32.5 × 106 frozen-thawed European ( n = 40) fallow deer spermatozoa. The semen used had been collected, from two Mesopotamian and two European fallow deer bucks, by electroejaculation under general anaesthesia. Pregnancy was diagnosed by rectal ultrasonogrdphy on Day 50 after insemination.
There were no apparent differences in the quality of ejaculates between the two subspecies of fallow deer. The volume of semen and the total number of spermatozoa ranged between 0.6–1.2 ml and 2.11–4.95 × 109 per ml of semen, respectively. Evaluation of frozen-thawed spermatozoa revealed post-thaw motility rates between 50–70%. The overall conception rate was 65.3%. A higher conception rate was observed following insemination with European than Mesopotamian frozen-thawed spermatozoa (75% vs. 53.7%, respectively, P < 0.05). Insemination with fresh Mesopotamian spermatozoa increased the conception rate to a level not significantly different from that observed following insemination with European frozen-thawed spermatozoa (67.5% vs. 75%, for fresh Mesopotamian and frozen-thawed European semen, respectively).  相似文献   

20.
In this comparative study, reproductive parameters and semen characteristics of cloned bulls (n = 3) derived from somatic cell nuclear transfer (SCNT) were compared to their original cell donor Holstein-Friesian (n = 2) bulls from the same enterprise to assess the differences in reproductive potential between a donor bull and its clones. The parameters evaluated included motility of fresh, frozen-thawed and Percoll-treated frozen-thawed spermatozoa, as well as in vitro fertilization (IVF) ability, embryo quality, birth and survival of calves following IVF and embryo transfer with frozen-thawed semen. With fresh semen, spermatozoa from one cloned bull had lower motility than its donor. Cloned bulls had higher velocity parameters in fresh semen, but those effects were not obvious in frozen-thawed or frozen-thawed semen selected with a Percoll gradient. Semen collected from cloned bulls had significantly higher IVF rates compared to donors; however, embryo development per cleaved embryo or quality of blastocysts did not differ between donors and cloned bulls. Pregnancy and live offspring rates from one donor and its cloned bull did not differ between fresh (40%, 16/40 versus 46%, 17/37) and vitrified/thawed (13%, 2/16 versus 25%, 4/16) embryo transfer following IVF. A total of 26 calves were obtained from genotypically identical donor and cloned bulls with no signs of phenotypical abnormalities. These preliminary results suggested that the physiology of surviving postpubertal cloned bulls and quality of collected semen had equivalent reproductive potential to their original cell donor, with no evidence of any deleterious effects in their progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号