首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Papain was immobilized on wood chips by radiation polymerization without substantial loss of enzyme activity. The immobilized papain was used to hydrolyse soyabean meal and found to be stable upto 6 cycles of operation. Maximum hydrolysis occurred with 15% (W/V) immobilized matrix.  相似文献   

2.
The possibility of using thermostable inulinases from Aspergillus ficuum in place of invertase for sucrose hydrolysis was explored. The commercial inulinases preparation was immobilized onto porous glass beads by covalent coupling using activation by a silane reagent and glutaraldehyde before adding the enzyme. The immobilization steps were optimized resulting in a support with 5,440 IU/g of support (sucrose hydrolysis) that is 77% of the activity of the free enzyme. Enzymatic properties of the immobilized inulinases were similar to those of the free enzymes with optimum pH near pH 5.0. However, temperature where the activity was maximal was shifted of 10 degrees C due to better thermal stability after immobilization with similar activation energies. The curve of the effect of sucrose concentration on activity was bi-phasic. The first part, for sucrose concentrations lower than 0.3 M, followed Michaelis-Menten kinetics with apparent K(M) and Vm only slightly affected by immobilization. Substrate inhibition was observed at values from 0.3 to 2 M sucrose. Complete sucrose hydrolysis was obtained for batch reactors with 0.3 and 1 M sucrose solutions. In continuous packed-bed reactor 100% (for 0.3 M sucrose), 90% (1 M sucrose) or 80% sucrose conversion were observed at space velocities of 0.06-0.25 h(-1). The operational half-life of the immobilized inulinases at 50 degrees C with 2 M sucrose was 350 days.  相似文献   

3.
Sucrose-6-acetate is an important intermediate in the preparation of sucralose (a finest sweetener). In our study, Candida rugosa lipase coated with surfactant was firstly immobilized on sol–gel supports. Then, the immobilized enzyme was used in the regioselective synthesis of sucrose-6-acetate by transesterification of sucrose and vinyl acetate. The screening results revealed that Tween 80 was an ideal surfactant to coat lipase immobilized in sol–gel and exhibited the highest yield of sucrose-6-acetate. Other factors that influenced the yield during the preparation process were also studied. Under optimal conditions, the yield of sucrose-6-acetate could reach up to 78.68 %, while free lipase was easily inactivated in polar solvent. Thermal and operational stabilities were also improved significantly. Surfactant-coated lipase immobilized in sol–gel remained stable when the temperature was higher than 60 °C. Moreover, they could maintain high catalytic activity after six recycles. This strategy is economical, convenient and promising for the food industry.  相似文献   

4.
Different methods for stabilization of Mucor circinelloides lipase, facilitating its application in organic solvents were tested. Lipase was either isolated from the mycelium and immobilized on solid carriers (derivatives of cellulose, diatomaceous earth, modified porous glass) or immobilized in situ in the mycelium pellets and stabilized. The immobilized enzyme preparations were used for synthesis of sucrose, glucose, butyl and propyl oleates and caprylates, carried out in petroleum and di-n-pentyl ethers. Immobilized preparations of either crude or purified lipase isolated from the mycelium were at least 4–6 times less effective in sucrose esters synthesis than mycelium-bound lipase preparations. Lipase preparation with the highest synthetic activity was obtained by cross-linking of M. circinelloides mycelium pellets with glutardialdehyde (operational stability in sucrose caprylate synthesis was 94% after 4 runs (24 h each), and caprylic acid conversion was 91–85%). The best method for production of mechanically durable biocatalyst, which efficiently catalyzed sucrose esters synthesis, was found to be entrapment of the mycelium-bound lipase in polyvinyl pyrrolidone-containing chitosan beads solidified with hexametapolyphosphate.  相似文献   

5.
When grown on a sucrose-containing medium, Candida utilis synthesizes and secretes two invertases: one of molecular size of 280 kDa (the S-form – Slow-migrating) and a new form of Mr of 62 kDa (the F-form – Fast-migrating). Prior to immobilization, purification of S- and F-forms of invertase increased the immobilization yield to 89–100%, in comparison with that of crude invertase preparation (52%). The immobilized purified S- and F-form of invertase remained partially active after 15 min at 100 °C; the F-form retained almost 30% of its maximum activity. The immobilized S-form or F-form of invertase almost completely inverted (95% hydrolysis) 60% (w/v) sucrose over 5 h continuous reaction at 80 °C. Moreover, at 90 °C the immobilized F-form hydrolysed 70% of 60% (w/v) sucrose over 5 h, while the capability of the immobilized S-form of inverting sucrose over 5 h reaction decreased from 80% to 45%.  相似文献   

6.
Sugar-cane invertase (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26) immobilized on bentonite clay in 0.05 m acetate buffer, pH 4.5, has been shown to be capable of hydrolysing sucrose. The bentonite-invertase (BI) complex gave 55.5% retention of enzyme activity on the surface. A further 17 and 22% increase in retention of enzyme activity was obtained using the covalent linking agents, cyanuric chloride and thionyl chloride, giving bentonite-cyanuric chloride-invertase (BCCI) and bentonite-thionyl chloride-invertase (BTCI) complexes. Concentrations of acetate buffer >0.2 M disrupt the bentonite-invertase complexes. The immobilized invertase complexes showed high temperature optima (60–65°C) and high thermal stability compared to the free enzyme. The pH profiles of the free and immobilized enzyme were the same. The rate of hydrolysis of sucrose was increased using immobilized enzymes, which required a higher substrate concentration than the free enzyme. The insoluble enzyme conjugate-carrier complexes when used for sucrose hydrolysis in a batch process showed 53.1 (BI), 57.4 (BCCI) and 59.6% (BTCI) conversions, respectively, in 12 h, compared to 42.3% conversion in 24 h with the free enzyme. The immobilized invertase complexes can be used for sucrose inversion for about five cycles. The application of this immobilization procedure may help in the removal of invertase from cane juice to reduce sugar losses in industry.  相似文献   

7.
In recent decades, the production of palatinose has aroused great interest since this structural isomer of sucrose has interesting potential. We describe a simple and effective method of immobilizing Serratia plymuthica cells in chitosan. The sucrose isomerase activity of immobilized preparations was enhanced many times by activation with fresh nutrient medium and subsequent drying. The preparations obtained were physically very stable with high enzyme activity and excellent operational stability. The effect of temperature, pH and substrate concentration on enzyme activity of the immobilized cells was investigated. Using immobilized cells, a complete conversion of sucrose (40% solution) into palatinose was achieved in 4 h in a "batch"-type enzyme reactor. The use of free or immobilized cells had no effect on the composition of the solution, in particular the sugar content. The palatinose content was 80% and that of trehalulose 7%.  相似文献   

8.
As a short chain monoester, sucrose-6-acetate (S-6-a) is a key intermediate in the preparation of an eminent sweetener (sucralose). To replace the traditional multi-step chemical route for sucralose biosynthesis, enzymatic synthesis of S-6-a was investigated, using cross-linked enzyme aggregates (CLEAs) of Lipozyme TL 100 L. The optimal CLEA preparation conditions was obtained as follows: using 33.3% (v/v) PEG600 co-precipitated with additive of D-sorbierite, then cross-linking with 1.5% (v/v) glutaraldehyde at 0 °C for 4 h. As a result, the immobilized Lipozyme had high specific bioactivity (34.64 U/g) of transesterification in non-aqueous media. With these immobilized enzymes, the optimum transesterification conditions were investigated systematically, including CLEA loading, the mole ratio of vinyl acetate versus sucrose, temperature and reaction time, etc. The results showed that the highest concentration and yield of S-6-a was 49.8 g/L and 87.46%, respectively. Further experiments showed that the resulting CLEAs also had much higher operational stability than the commercial Lipozyme TLIM. The present work has paved a new path for the large-scale bioproduction of S-6-a with immobilized lipase in the future.  相似文献   

9.
A continuous production of fructooligosaccharides from sucrose was investigated by fructosyltransferase immobilized on a high porous resin, Diaion HPA 25. The optimum pH (5.5) and temperature (55°C) of the enzyme for activity was unaltered by immobilization, and the immobilized enzyme became less sensitive to the pH change. The optimal operation conditions of the immobilized enzyme column for maximizing the productivity were as follows: 600 g/L of sucrose feed concentration, flow rate of superficial space velocity 2.7 h?1. When the enzyme column was run at 50°C, about 8% loss of the initial activity of immobilized enzyme was observed after 30 days of continuous operation, during which high productivity of 1174 g/L·h was achieved. The kinds of products obtained using the immobilized enzyme were almost the same as those using soluble enzymes or free cells.  相似文献   

10.
J. Edelman  A. D. Hanson 《Planta》1971,101(2):122-132
Summary Free space invertase activities were determined in carrot callus strains CRT1 and CRT2 grown under conditions in which sucrose suppression of chlorophyll synthesis occurred in CRT1 but not CRT2. CRT2 possessed a high free space acid invertase activity (pH optimum 5.0 Km for sucrose 3.1×10-3M) while CRT1 lacked this enzyme. [U-14C] sucrose introduced into the free space of calluses was rapidly inverted by CRT2, but not by CRT1.Despite their different invertase levels, CRT1 and CRT2 showed similar sucrose uptake rates and took up [U-14C-glucosyl] sucrose and [5-T-glucosyl] sucrose from external bathing media essentially without prior inversion.It is concluded that acid invertase in callus tissue relieves the suppression of chlorophyll synthesis caused by sucrose in the free space. The invertase may in some circumstances hydrolyse sucrose before uptake, but is not an essential part of the sucrose uptake mechanism in carrot tissue cultures.  相似文献   

11.
Trypsin (EC 3.4.4.4) was immobilized in low yield on aminoalkylsilylated magnetite (Fe3O4). Better results were obtained when trypsin was immobilized by crosslinking with glutaraldehyde on magnetite. The preparation contained 36 mg protein/g magnetite and the enzyme retained 46% and 11% of esterase and proteolytic activity. Immobilized trypsin was more heat stable than trypsin. Invertase (β-D -fructofuranoside fructohydrolase, EC 3.2.1.26) was cross-linked on magnetite with glutaraldehyde in low yield due to the inactivation of the enzyme. However in the presence of 1% sucrose, the total activity recovered was 79% of the initial activity and the preparation contained 4.4 mg/g of active invertase. Immobilized invertase was less active than invertase when acting on oligosaccharides of the raffinose family. The immobilized enzymes could be easily recovered, from solutions or suspensions, magnetically.  相似文献   

12.
The productivity of the continuous production of fructooligosaccharides from sucrose was investigated by fructosyltransferase immobilized onto a high-porous ion exchange resin was optimal with 600 g sucrose/l at a flow rate of 2.7 h–1 expressed as a superficial space velocity. When the column was operated at 50 °C, about 8% loss of the initial activity of immobilized enzyme was observed after 30 days continuous operation, achieving high productivity of 1174 g/l · h.  相似文献   

13.
Palatinose is a non-cariogenic disaccharide obtained from the enzymatic conversion of sucrose, used in food industries as a sugar substitute. Free and Ca-alginate immobilized cells of Erwinia sp. D12 were used to produce palatinose from sucrose. Palatinose production was studied in a repeated-batch process using different immobilized biocatalysts: whole cells, disrupted cells and glucosyltransferase. Successive batches were treated with the immobilized biocatalyst, but a decrease in palatinose production was observed. A continuous process using a packed-bed reactor was investigated, and found to produce 55–66% of palatinose during 17 days using immobilized cells treated with glutaraldehyde and a substrate flow speed of 0.56 ml min−1. However, immobilized cells in a packed-bed reactor failed to maintain the palatinose production for a prolonged period. The free cells showed a high conversion rate using batch fermentation, obtaining a palatinose yield of 77%. The cells remained viable for 16 cycles with high palatinose yields (65–77%). Free Erwinia sp. D12 cells supported high production levels in repeated-batch operations, and the results showed the potential for repeated reuse.  相似文献   

14.
Amides of very good chemical quality have been obtained by the bioconversion of the corresponding nitriles using immobilized bacteria with nitrilase activity (nitrile hydratase). The bioreactor was polyvalent since the nitrilase used had a generalized activity and could hydrolyse a large number of nitriles. The present paper shows the polyvalence and simplicity of the process, and the quality of the amides obtained.  相似文献   

15.
Bromelain is a basic, 23.8 kDa thiol proteinase obtained from the stem of the pineapple plant (Ananas comosus) and is unique for it contains a single histidine residue (His-158) in the polypeptide. Based on the technology of protein separation with immobilized metal ion affinity chromatography (IMAC), a method for oriented immobilization of bromelain was selected. Bromelain was successfully immobilized on iminodiacetic acid carrier Sepharose 6B. Cu2+ complexed with iminodiacetate (IDA) was used as the chelating ligand to bind the lone histidine on bromelain. Simultaneously, preparation of a high affinity immobilized preparation was attempted using a soluble cross-linked preparation of bromelain on Cu-IDA-Sepharose. However this second method proved unsuccessful, possibly due to poor histidine accessibility in the cross-linked preparation. The immobilized preparation obtained using uncrosslinked bromelain was more resistant to thermal inactivation, as evidenced by retention of over enzyme 50% activity after incubation at 60 °C, as compared to 20% retained by the native enzyme. The immobilized preparation also exhibited a broader pH-activity profile in acidic range. The native, immobilized and soluble cross-linked bromelain showed apparent Michaelis constant (Km) values of 1.08, 0.42, 1.56 mg/ml, respectively, using casein as the substrate. While the maximum velocity (Vmax) values of the soluble and immobilized preparations were comparable, cross-linked preparation showed a 20% decrease, suggesting inactivation. The mild conditions used for predominantly oriented immobilization exploiting the unique property of single histidine, the high recovery of immobilized preparations, the stability, reusability and the regenerability of the matrix are the main features of the method reported here.  相似文献   

16.
An enzymatic biosensor for sucrose determination was developed for on-line and continuous monitoring of sucrose concentration. The sensor was adapted to two different measurement schemes, one continuous and another injection sampling lines. The sensor adapted with the injection sampling line presented a linear measurement range of 5–20 g sucrose/1, good reproducibility, and a high versatility permitting the substitution of the immobilized enzymes when their activity decreased. © Rapid Science Ltd. 1998  相似文献   

17.
A new technique using chitosan as support for covalent coupling of invertase via carbohydrate moiety improved the activity and thermal stability of immobilized invertase. The best preparation of immobilized invertase retained 91% of original specific activity (412 U mg–1). The half-life at 60°C was increased from 2.3 h (free invertase) to 7.2 h (immobilized invertase). In contrast, the immobilization of invertase via protein moiety on chitosan or using Sepharose as support resulted in less thermostable preparations. Additionally, immobilization of invertase on both supports caused the optimal reaction pH to shift from 4.5 to 2.5 and the substrate (sucrose) concentration for maximum activity to increase from 0.5 M to 1.0 M.  相似文献   

18.
Abstract

Dates by-products (discarded dates) from the sucrose-rich variety of ‘Deglet Nour’ were used as starting biomass to produce high-fructose syrup (HFS) based on an immobilized invertase process. A novel extracellular thermostable invertase obtained from Aspergillus awamori cultivated in submerged medium was induced with sucrose at 1% and used for this purpose. A zymogram of the crude extract showed the presence of a unique enzyme form that was optimally produced on the 5th day. This enzyme preparation was biochemically characterized and immobilized on acetic acid-solubilized chitosan by covalent binding using glutaraldehyde (Yi = 88%, Ya = 54% and 15.53 U/g). When deployed in a packed bed reactor (PBR), HFS was efficiently and continuously produced from sucrose derived from aqueous date extracts. Feeding with an extract initially containing 139.2 g/L total sugar with 78.6 g/L sucrose at a flow rate of 17 ml/h, 50°C and pH 6 resulted in a conversion factor of 0.95 and a final fructose content in the syrup of 69 g/L.  相似文献   

19.
Bioprocesses using filamentous fungi immobilized in inert supports present many advantages when compared to conventional free cell processes. However, assessment of the real advantages of the unconventional process demands a rigorous study of the limitations to diffusional mass transfer of the reagents, especially concerning oxygen. In this work, a comparative study was carried out on the cephalosporin C production process in defined medium containing glucose and sucrose as main carbon and energy sources, by free and immobilized cells of Cephalosporium acremonium ATCC 48272 in calcium alginate gel beads containing alumina. The effective diffusivity of oxygen through the gel beads and the effectiveness factors related to the respiration rate of the microorganism were determined experimentally. By applying Monod kinetics, the respiration kinetics parameters were experimentally determined in independent experiments in a complete production medium. The effectiveness factor experimental values presented good agreement with the theoretical values of the approximated zero‐order effectiveness factor, considering the dead core model. Furthermore, experimental results obtained with immobilized cells in a 1.7‐L tower bioreactor were compared with those obtained in 5‐L conventional fermentor with free cells. It could be concluded that it is possible to attain rather high production rates working with relatively large diameter gel beads (ca. 2.5 mm) and sucrose consumption‐based productivity was remarkably higher with immobilized cells, i.e., 0.33 gCPC/kg sucrose/h against 0.24 gCPC/kg sucrose/h in the aerated stirred tank bioreactor process. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 593–600, 1999.  相似文献   

20.
Summary -Fructofuranosidase, which produces fructo-oligosaccharides (1-kestose and nystose) from sucrose, was purified fromAureobasidium and immobilized on DEAE-cellulose at especially high efficiency (95%). The enzymatic profiles of the immobilized enzyme were almost identical to those of the native form except that the stability was slightly improved. The immobilized enzyme was stable during long-term continuous reaction for up to 360 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号