首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karyotypic analyses of Down syndrome patients have identified a low level of chromosome mosaicism, suggesting that the primary aneuploid status of the cells promotes further chromosomal segregation errors. Sycp3-null female mice produce aneuploid oocytes, which after fusion with normal haploid sperm, result in offspring with systemic whole chromosome, aneuploid embryo cells. Using the Sycp3-null female as a model, we observe an increase in the number of embryonic cells at E7.0 that exhibit abnormal chromosomal bridges at the anaphas estage of mitosis. This result suggests that global changes in gene expression patterns resulting from primary aneuploidy can affect mitotic chromosome segregation, resulting in a low level of chromosomal instability. The increased level of chromosomal instability could in the absence of mitotic checkpoints, lead to chromosomal mosaicism within the adult organism, as seen in Down syndrome patients.  相似文献   

2.
Posttranslational histone modifications regulate both gene expression and genome integrity. Despite the dynamic nature of these modifications, appropriate real-time monitoring systems are lacking. In this study, we developed a method to visualize histone modifications in living somatic cells and preimplantation embryos by loading fluorescently labeled specific Fab antibody fragments. The technique was used to study histone H3 Ser10 (H3S10) phosphorylation, which occurs during chromosome condensation in mitosis mediated by the aurora B kinase. In aneuploid cancer cells that frequently missegregate chromosomes, H3S10 is phosphorylated just before the chromosomes condense, whereas aurora B already accumulates in nuclei during S phase. In contrast, in nontransformed cells, phosphorylated H3S10 foci appear for a few hours during interphase, and transient exposure to an aurora B–selective inhibitor during this period induces chromosome missegregation. These results suggest that, during interphase, moderate aurora B activity or H3S10 phosphorylation is required for accurate chromosome segregation. Visualizing histone modifications in living cells will facilitate future epigenetic and cell regulation studies.  相似文献   

3.
Phosphorylation of nuclear proteins   总被引:1,自引:0,他引:1  
Many nuclear proteins are phosphorylated: they range from enzymes to several structural proteins such as histones, non-histone chromosomal proteins and the nuclear lamins. The pattern of phosphorylation varies through the cell cycle. Although histone H1 is phosphorylated during interphase its phosphorylation increases sharply during mitosis. Histone H3, chromosomal protein HMG 14 and lamins A, B and C all show reversible phosphorylation during mitosis. Several nuclear kinases have been characterized, including one that increases during mitosis and phosphorylates H1 in vitro. Factors have been demonstrated in maturing amphibian oocytes and mitotic mammalian cells that induce chromosome condensation and breakdown of the nuclear membrane. The possibility that they are autocatalytic protein kinases is considered. The location of histone phosphorylation sites within the nucleosome is consistent with a role for phosphorylation in modulating chromatin folding.  相似文献   

4.
Song L  Li D  Liu R  Zhou H  Chen J  Huang X 《Cell biology international》2007,31(10):1184-1190
Ser-10 phosphorylation of histone H3 is revealed to be relative to chromosome condensation at prophase during mitosis. In this report, we demonstrate using immunofluorescence microscopy that the subcellular distribution of the Ser-10 phosphorylated histone H3 was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis. Co-immunoprecipitation indicates that the Ser-10 phosphorylated histone H3 is associated with the aurora B, and both of the proteins were compacted into a complex with special ternary structure located in the centre of the midbody. When the level of the Ser-10 phosphorylated histone H3 was reduced by RNA interference, the cells formed an aberrant midbody and could not complete cytokinesis successfully. This evidence suggests that Ser-10 phosphorylated histone H3 is a chromosomal passenger protein and plays a crucial role in cytokinesis.  相似文献   

5.
6.
Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique “meiosis-mitosis shift” at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.  相似文献   

7.
We have generated and characterized a novel site-specific antibody highly specific for the phosphorylated form of the amino-terminus of histone H3 (Ser10). In this study, we used this antibody to examine in detail the relationship between H3 phosphorylation and mitotic chromosome condensation in mammalian cells. Our results extend previous biochemical studies by demonstrating that mitotic phosphorylation of H3 initiates nonrandomly in pericentromeric heterochromatin in late G2 interphase cells. Following initiation, H3 phosphorylation appears to spread throughout the condensing chromatin and is complete in most cell lines just prior to the formation of prophase chromosomes, in which a phosphorylated, but nonmitotic, chromosomal organization is observed. In general, there is a precise spatial and temporal correlation between H3 phosphorylation and initial stages of chromatin condensation. Dephosphorylation of H3 begins in anaphase and is complete immediately prior to detectable chromosome decondensation in telophase cells. We propose that the singular phosphorylation of the amino-terminus of histone H3 may be involved in facilitating two key functions during mitosis: (1) regulate protein-protein interactions to promote binding of trans-acting factors that “drive” chromatin condensation as cells enter M-phase and (2) coordinate chromatin decondensation associated with M-phase. Received: 4 September 1997; in revised form: 14 September 1997 /Accepted: 14 September 1997  相似文献   

8.
Ion exchange chromatography and preparative electrophoresis were used to examine the phosphorylation of histone f1 and f3 subfractions in synchronized Chinese hamster cells (line CHO). Three discrete f1 phosphorylation events were demonstrated to occur in sequence during the cell cycle. The first event (f1G1) commenced in G1 2 hours prior to entry of cells into S phase; the second event (f1s) commenced simultaneously with initiation of DNA synthesis; and the third event (f1M) commenced when cells entered mitosis. F1M phosphorylation occurred simultaneously with the phosphorylation of histone f3 (which is not phosphorylated during G1, S, or G2). Fractionation of f1 and f3 revealed no differences in these sequential phosphorylation patterns among the various f1 and f3 subfractions, indicating that these phosphorylations are general biochemical events of the cell cycle. Phosphorylated (f1G1) was found to accumulate in cells as they traversed THEIR CELL CYCLE. F1s was phosphorylated to twice the extent of f1G1, but f1s did not accumulate in the cells as they passed through interphase. F1M was phosphorylated to about 4 times the extent of the first phosphorylated form (f1G1). A model of the relationship of histone phosphorylation to the cell cycle is presented which suggests that (a) f1G1 phosphorylation is involved with chromatin structural changes necessary for cell proliferation; (b) f1s phosphorylation is involved with DNA replication; (c) F1M and f3 phosphorylations are involved in chromosome condensation.  相似文献   

9.
Pallister-Killian syndrome is a chromosomal mosaic syndrome with a normal and an isochromosome 12p cell line, the latter rarely seen in peripheral blood. The isochromosome 12p cell line decreases with serial passages of fibroblasts in vitro and with age of patient in vivo. To evaluate cell death as a possible mechanism for loss of the abnormal cell line, amniocytes from a fetus with Pallister-Killian syndrome were identified as normal or aneuploid using a chromosome 12 alpha-satellite DNA probe by fluorescent in situ hybridization (FISH) and then subsequently stained with Annexin V, which stains the cytoplasm of cells that are dying. Although not conclusive, our preliminary results suggest that the abnormal cell line is going through apoptosis or necrosis at a higher rate than normal cells. Cell death may be a possible mechanism for decrease of the aneuploid cell line in patients with Pallister-Killian syndrome.  相似文献   

10.
The relationship between the apparently random chromosomal changes found in aneuploidy and the genetic instability driving the progression of cancer is not clear. We report a test of the hypothesis that aneuploid chromosomal abnormalities might be selected to preserve cell-survival genes during loss of heterozygosity (LOH) formations which eliminate tumor suppressor genes. The LOHs and structurally abnormal chromosomes present in the aneuploid LoVo (colon), A549 (lung), SUIT-2 (pancreas), and LN-18 (glioma) cancer cell lines were identified by single nucleotide polymorphisms (SNPs) and Spectral Karyotyping (SKY). The Mann-Whitney U and chi square tests were used to evaluate possible differences in chromosome numbers and abnormalities between the cell lines, with two-tailed P values of <0.01 being considered significant. The cell lines differed significantly in chromosome numbers and frequency of structurally abnormal chromosomes. The SNP analysis revealed that each cell line contained at least a haploid set of somatic chromosomes, consistent with our hypothesis that cell-survival genes are widely scattered throughout the genome. Further, over 90% of the chromosomal abnormalities seemed to be selected, often after LOH formation, for gene-dosage compensation or to provide heterozygosity for specific chromosomal regions. These results suggest that the chromosomal changes of aneuploidy are not random, but may be selected to provide gene-dosage compensation and/or retain functional alleles of cell-survival genes during LOH formation.  相似文献   

11.
Phosphorylation of the lysine-rich histones throughout the cell cycle.   总被引:3,自引:0,他引:3  
R Balhorn  V Jackson  D Granner  R Chalkey 《Biochemistry》1975,14(11):2504-2511
The phosphorylating of the lysine-rich histone at various stages in the cell cycle has been studied. In rapidly dividing cell populations the lysine-rich histone is phosphorylated rapidly after synthesis and more slowly once bound to the chromosome. The half-life of hydrolysis of such interphase phosphorylation in 5 hr except during mitosis when the phosphata hydrolysis increases almost three-fold. During mitosis there is extensive phosphorylation at sites different from those phosphorylated during interphase and a smaller measure of sites common to both mitotic and interphase cells. The sites of mitotic phosphorylation are most critically distinguished from those phosphorylated in interphase by the rapidly hydrolysis of M-phase phosphohistone when the cells divide and enter the G1 phase of the cell cycle.  相似文献   

12.
P. E. Conen 《CMAJ》1967,96(25):1599-1605
This review discusses the significance of chromosomal abnormalities found in leukemia with the bias of belief that these have a primary role or are the mechanism of action of leukemogenic agents. The Philadelphia chromosome (Ph1) is present in marrow cells examined without culture at any stage of most patients with chronic granulocytic leukemia (CGL). the presence of this chromosome is of diagnostic and prognostic value.Varied chromosomal abnormalities have been found in acute leukemia. Each abnormality, which may be unique, is absent in remission, found again at relapse and is seldom changed by therapy. Abnormalities may be of number of chromosomes (aneuploid) or structural rearrangements resulting in “marker” chromosomes, Ranges of abnormal numbers of chromosomes, when present, usually have related patterns which suggest origin of several cell types from one initial cell. Cells from patients with increased risk of leukemia owing to genetic factors have a high incidence of chromosome breakage and structural rearrangements suggesting a mechanism for production of clones of abnormal, possibly leukemic, cells.  相似文献   

13.
It is common knowledge that mouse embryonic stem cell (mESC) lines accumulate chromosomal changes during culture. Despite the wide use of mESCs as a model of early mammalian development and cell differentiation, there is a lack of systematic studies aimed at characterizing their karyological changes during culture. We cultured an mESC line, derived in our laboratory, for a period of 3 months investigating its chromosome complement at different times. About 60% of the metaphases analysed were euploid throughout the culture period but, from passage 13, only 50% of the euploid metaphases had a proper chromosome complement. The remaining 50% showed chromosome abnormalities, mainly gain or loss of entire chromosomes, both within the same passage and among different passages analysed. The very heterogeneous spectrum of abnormalities indicates a high frequency of chromosome mutations that arise continuously during culture. The heterogeneity of the aberrant chromosome constitution of 2n = 40 metaphases, observed at different passages of culture, might be due either to their elimination or to a shift towards the hypoeu- or hypereuploid population of those metaphases that accumulate further chromosome abnormalities. The stability of the frequency of eu-, hypoeu- and hypereuploid populations during culture might, however, be due to the elimination of those cells that carry a high mutational burden. Based on our results, we suggest that karyotype analysis of the euploid cell population of mESC lines is necessary when such lines are used in the production of chimeric mice, for their contribution to the germ line, or when they are differentiated into specific cell types.  相似文献   

14.
Variations in cultivation conditions were found to exert influence on the distribution of cells for chromosome number by changing the modal class. The change of the HMEM medium for the EMEM medium during 2-6 passages results in the appearance of a new modal class with 16 chromosomes. The change in the chromosome number is preferably due to the loss of one X chromosome within the main structural variant of the karyotype (MSVK). On the other hand, the change of the HMEM medium for the F12 medium during 4-6 passages does not affect the cell distribution for the chromosome number. A comparative analysis of the total frequency of the MSVK cells and that of MSVK cells of the modal class showed that the karyotypic changes took place in all the variants, both in the modal class and beyond it due to other additive SVK. An exception is the variant NBLD (change of HMEM for the F12 during 6 passages). In this case chromosome changes occur mostly in the modal class, primarily due to the redistribution of chromosomes in groups. In all the variants there is an insignificant frequency of chromosomes, morphologically different from the MSVK. This confirms the findings according to which chromosomal changeability in the NBLD may be associated mostly with the change in the number of homologous chromosomes rather than with chromosomal aberrations. The frequency of chromosomal aberrations is the same in all the variants examined. The dependence of karyotypic characteristics on culture media mentioned above indicate that care should be taken in choice of culture conditions for permanent cell lines.  相似文献   

15.
Summary Numerical and structural chromosome variation was analysed in dividing protoplasts isolated from suspension cells of barley. Five cell lines exhibited distribution patterns in chromosome number with different peaks and ranges. Embryogenic/morphogenic cell lines showed a peak at 2n = 14 (ca. 50%) after 6–7 months in culture, while older non-embryogenic cell lines had peaks at aneuploid or polyploid chromosome numbers. Culture duration had a clear effect on numerical and structural chromosome variation in embryogenic cell lines. With ageing of the cultures chromosome variation accumulated and the proportion of 2n = 14 cells decreased. The effect of protoplast isolation and culture on chromosome variation was examined; more cells with normal chromosome sets (12%) were maintained in protoplast-derived colonies than in source suspension cells (4%) of the same culture age.Abbreviations DC Dicentric - F fragment - T telocentric  相似文献   

16.
17.
Most cancer cells show chromosomal instability, a condition where chromosome missegregation occurs frequently. We found that chromosome oscillation, an iterative chromosome motion during metaphase, is attenuated in cancer cell lines. We also found that metaphase phosphorylation of Hec1 at serine 55, which is mainly dependent on Aurora A on the spindle, is reduced in cancer cell lines. The Aurora A–dependent Hec1-S55 phosphorylation level was regulated by the chromosome oscillation amplitude and vice versa: Hec1-S55 and -S69 phosphorylation by Aurora A is required for efficient chromosome oscillation. Furthermore, enhancement of chromosome oscillation reduced the number of erroneous kinetochore–microtubule attachments and chromosome missegregation, whereas inhibition of Aurora A during metaphase increased such errors. We propose that Aurora A–mediated metaphase Hec1-S55 phosphorylation through chromosome oscillation, together with Hec1-S69 phosphorylation, ensures mitotic fidelity by eliminating erroneous kinetochore–microtubule attachments. Attenuated chromosome oscillation and the resulting reduced Hec1-S55 phosphorylation may be a cause of CIN in cancer cell lines.  相似文献   

18.
We have characterized seven human renal cell carcinoma cell lines established from primary sites of five patients between 1987 and 1989. Two lines, OUR-20P and OUR-20S, were derived from the OUR-20 cells by cloning with a dilution method 3 months after the primary culture. These three cell lines were tumorigenic in athymic nude mice when inoculated subcutaneously. Examined by a dye uptake method, OUR-20 was highly sensitive to interferon-alpha (IFN-alpha); OUR-20P, OUR-20S and OUR-30 showed slight sensitivities, while the other three cell lines were insensitive. All seven cell lines have been maintained for more than 2 years and over 50 passages in vitro. Cytogenetic analyses performed 1.5 to 3 years after the starts of primary cultures indicated that all seven cell lines, which exhibited different morphologies in phase-contrast micrographs, were aneuploid with modal chromosome numbers 41 to 89.  相似文献   

19.
Boggs BA  Allis CD  Chinault AC 《Chromosoma》2000,108(8):485-490
One of the prominent cell cycle-related modifications of histone proteins whose function remains unresolved is the phosphorylation of linker histone H1. In this work we have used indirect immunofluorescence on human cells with antibodies that are specific for phosphorylated histone H1 to examine the cellular distribution and chromosome association patterns of this protein. With confocal microscopy on whole cells, strong immunofluorescence was seen in association with mitotic chromosomes as well as a prominent punctate pattern of labeling throughout the mitotic cell, whereas interphase cells showed very little, if any, specific fluorescence. Multiple patterns of fluorescence distribution were detected with metaphase chromosomes, ranging from apparent tight colocalization with the DNA to expanded ”puffy” mitotic figures to an amorphous network of staining. It was also shown that the ability to label chromosomes could vary drastically with different fixation procedures, adding further complications to interpretation of the potentially complex role of phosphorylated histone H1 in chromatin condensation or decondensation. Received: 8 September 1999; in revised form: 14 September 1999 / Accepted: 17 September 1999  相似文献   

20.
Although mouse embryonic stem cell lines (mESCs) have been established since 1981, systematic studies about chromosomal changes during culture are lacking. In this study, we report the results of a cytogenetic analysis performed on three mESC lines (named UPV02, UPV06 and UPV08) cultured for a period of 3 months. At time intervals, the variation of the chromosome number together with the expression of markers of the undifferentiated status, i.e., OCT-4, SSEA-1, FOM-1 and alkaline phosphatase activity, were determined. The three mESC lines showed a progressive loss of euploid metaphases during the 3 months period of culture. Chromosome abnormalities were accumulated at the latest passages analysed. Metacentric chromosomes were the most frequent chromosome abnormality observed throughout the period of culture. Interestingly, in coincidence with, or few passages after, the drop of euploidy, the alkaline phosphatase activity was partially or totally lost, whereas the OCT-4, SSEA-1 and FOM-1 stem markers were always positive throughout the period of culture. Our results remark the necessity to perform the karyotype analysis during culture in order to develop new culture conditions to maintain the correct chromosome complement in long-term culture of mESC lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号