首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ret/ptc2 is a constitutively active, oncogenic form of the c-Ret receptor tyrosine kinase. Like the other papillary thyroid carcinoma forms of Ret, Ret/ptc2 is activated through fusion of the Ret tyrosine kinase domain to the dimerization domain of another protein. Investigation of requirements for Ret/ptc2 mitogenic activity, using coexpression with dominant negative forms of Ras and Raf, indicated that these proteins are required for mitogenic signaling by Ret/ptc2. Because activation of Ras requires recruitment of Grb2 and SOS to the plasma membrane, the subcellular distribution of Ret/ptc2 was investigated, and it was found to localize to the cell periphery. This localization was mediated by association with Enigma via the Ret/ptc2 sequence containing tyrosine 586. Because Shc interacts with MEN2 forms of Ret, and because phosphorylation of Shc results in Grb2 recruitment and subsequent signaling through Ras and Raf, the potential interaction between Ret/ptc2 and Shc was investigated. The PTB domain of Shc also interacted with Ret/ptc2 at tyrosine 586, and this association resulted in tyrosine phosphorylation of Shc. Coexpression of chimeric proteins demonstrated that mitogenic signaling from Ret/ptc2 required both recruitment of Shc and subcellular localization by Enigma. Because Shc and Enigma interact with the same site on a Ret/ptc2 monomer, dimerization of Ret/ptc2 allows assembly of molecular complexes that are properly localized via Enigma and transmit mitogenic signals via Shc.  相似文献   

2.
The RET gene codes for a receptor tyrosine kinase that plays a crucial role during the development of both the enteric nervous system and the kidney. Germ line missense mutations at one of six codons specifying extracytoplasmic cysteines are responsible for two related cancer disorders as follows: multiple endocrine neoplasia type2A (MEN2A) and familial medullary thyroid carcinoma (FMTC). MEN2A and FMTC mutations result in a constitutive catalytic activity and as a consequence convert RET into a dominantly acting transforming gene. Although it has been shown that RET-MEN2 mutants activate several transduction pathways, their respective contribution to the neoplastic phenotype remains poorly understood. Over the past few years, it has become increasingly clear that the transforming ability of several viral and cellular oncoproteins depends on their capacity to activate phosphatidylinositol 3-kinase (PI3K). We now report that RET carrying a representative MEN2A mutation at Cys-634 (termed RET-MEN2A) activates PI3K and its downstream effector, the serine/threonine kinase AKT/protein kinase B. Previous studies have demonstrated that mutation of Tyr-1062, which is the intracellular docking site for Shc and Enigma on RET, abolishes the RET-MEN2A transforming activity. We provide evidence that mutation of Tyr-1062 abrogates the binding of the p85 regulatory subunit of PI3K to RET-MEN2A and the subsequent stimulation of the PI3K/AKT pathway. Furthermore, infection of rat fibroblasts with a retrovirus expressing a dominant-interfering form of PI3K suppresses RET-MEN2A-dependent transformation, whereas overexpression of AKT enhances the RET-MEN2A oncogenic potential. In summary, these data are consistent with the notion that RET-mediated cell-transforming effect is critically dependent on the activation of the PI3K/AKT pathway.  相似文献   

3.
The receptor tyrosine kinase RET functions as the signal transducing receptor for the GDNF (for "glial cell-derived neurotrophic factors") family of ligands. Mutations in the RET gene were implicated in Hirschsprung disease (HSCR), multiple endocrine neoplasia type 2 (MEN 2), and thyroid carcinomas. In this report we demonstrate that the docking protein FRS2 is tyrosine phosphorylated by ligand-stimulated and by constitutively activated oncogenic forms of RET. Complex formation between RET and FRS2 is mediated by binding of the phosphotyrosine-binding domain of FRS2 to pY1062, a residue in RET that also functions as a binding site for Shc. However, overexpression of FRS2 but not Shc potentiates mitogen-activated protein (MAP) kinase activation by RET oncoproteins. We demonstrate that oncogenic RET-PTC proteins are associated with FRS2 constitutively, leading to tyrosine phosphorylation of FRS2, MAP kinase stimulation, and cell proliferation. However, loss-of-function HSCR-associated RET mutants exhibit impaired FRS2 binding and reduced MAP kinase activation. These experiments demonstrate that FRS2 couples both ligand-regulated and oncogenic forms of RET, with the MAP kinase signaling cascade as part of the response of RET under normal biological conditions and pathological conditions, such as MEN 2 and papillary thyroid carcinomas.  相似文献   

4.
Mutation of the major site of in vivo tyrosine phosphorylation of p56lck (tyrosine 505) to a phenylalanine constitutively enhances the p56lck-associated tyrosine-specific protein kinase activity. The mutant polypeptide is extensively phosphorylated in vivo at the site of in vitro Lck autophosphorylation (tyrosine 394) and is capable of oncogenic transformation of rodent fibroblasts. These observations have suggested that phosphorylation at Tyr-505 down regulates the tyrosine protein kinase activity of p56lck. Herein we have attempted to examine whether other posttranslational modifications may be involved in regulation of the enzymatic function of p56lck. The results indicated that activation of p56lck by mutation of Tyr-505 was prevented by a tyrosine-to-phenylalanine substitution at position 394. Furthermore, activation of p56lck by mutation of the carboxy-terminal tyrosine residue was rendered less efficient by substituting an alanine residue for the amino-terminal glycine. This second mutation prevented p56lck myristylation and stable membrane association and was associated with decreased in vivo phosphorylation at Tyr-394. Taken together, these findings imply that lack of phosphorylation at Tyr-505 may be insufficient for enhancement of the p56lck-associated tyrosine protein kinase activity. Our data suggest that activation of p56lck may be dependent on phosphorylation at Tyr-394 and that this process may be facilitated by myristylation, membrane association, or both.  相似文献   

5.
Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases.  相似文献   

6.
The CD45 tyrosine phosphatase has been reported to activate the src family tyrosine kinases Lck and Fyn by dephosphorylating regulatory COOH-terminal tyrosine residues 505 and 528, respectively. However, recent studies with CD45- T-cell lines have found that despite the fact that Lck and Fyn were constitutively hyperphosphorylated, the tyrosine kinase activity of both enzymes was actually increased. In the present study, phosphoamino acid analysis revealed that the increased phosphorylation of Lck in CD45- YAC-1 T cells was restricted to tyrosine residues. To understand the relationship between tyrosine phosphorylation and Lck kinase activity, CD45- YAC-1 cells were transfected with forms of Lck in which tyrosines whose phosphorylation is thought to regulate enzyme activity (Tyr-192, Tyr-394, Tyr-505, or both Tyr-394 and Tyr-505) were replaced with phenylalanine. While the Y-to-F mutation at position 192 (192-Y-->F) had little effect, the 505-Y-->F mutation increased enzymatic activity. In contrast, the 394-Y-->F mutation decreased the kinase activity to very low levels, an effect that the double mutation, 394-Y-->F and 505Y-->F, could not reverse. Phosphopeptide analysis of tryptic digests of Lck from CD45- YAC-1 cells revealed that it is hyperphosphorylated on two tyrosine residues, Tyr-505 and, to a lesser extent, Tyr-394. The purified and enzymatically active intracellular portion of CD45 dephosphorylated Lck Tyr-394 in vitro. These results demonstrate that in addition to Tyr-505, CD45 can dephosphorylate Tyr-394, and that in the absence of CD45 the hyperphosphorylation of Tyr-394 can cause an increase in the kinase activity of Lck despite the inhibitory hyperphosphorylation of Tyr-505. Therefore, Lck kinase activity is determined by the balance of activating and inhibitory tyrosine phosphorylations that are, in turn, regulated by CD45.  相似文献   

7.
The Src-family tyrosine kinase, Lck, contains two key regulatory phosphotyrosine residues, tyrosine 394 (Tyr-394) and tyrosine 505 (Tyr-505), both of which can be dephosphorylated by CD45. Here, the interaction of CD45 with its substrate, Lck, was determined to be complex, involving multiple interactions with both the catalytic and noncatalytic regions of Lck. CD45 preferentially dephosphorylated Tyr-394 over Tyr-505 in Lck. This was not due to sequence specificity surrounding the phosphotyrosine, but was due to the noncatalytic domains of Lck. The interactions with the noncatalytic domains of Lck and CD45 enhanced the dephosphorylation of Tyr-394 whereas intramolecular interactions within Lck reduced, but did not abolish, the dephosphorylation of Tyr-505. This demonstrates that the noncatalytic domains of Lck regulate the dephosphorylation of both Tyr-394 and Tyr-505 by CD45.  相似文献   

8.
The phosphorylation of protein tyrosine kinases (PTKs) on tyrosine residues is a critical regulatory event that modulates catalytic activity and triggers the physical association of PTKs with Src homology 2 (SH2)-containing proteins. The integrin-linked focal adhesion kinase, pp125FAK, exhibits extracellular matrix-dependent phosphorylation on tyrosine and physically associates with two nonreceptor PTKs, pp60src and pp59fyn, via their SH2 domains. Herein, we identify Tyr-397 as the major site of tyrosine phosphorylation on pp125FAK both in vivo and in vitro. Tyrosine 397 is located at the juncture of the N-terminal and catalytic domains, a novel site for PTK autophosphorylation. Mutation of Tyr-397 to a nonphosphorylatable residue dramatically impairs the phosphorylation of pp125FAK on tyrosine in vivo and in vitro. The mutation of Tyr-397 to Phe also inhibits the formation of stable complexes with pp60src in cells expressing Src and FAK397F, suggesting that autophosphorylation of pp125FAK may regulate the association of pp125FAK with Src family kinases in vivo. The identification of Tyr-397 as a major site for FAK autophosphorylation provides one of the first examples of a cellular protein containing a high-affinity binding site for a Src family kinase SH2 domain. This finding has implications for models describing the mechanisms of action of pp125FAK, the regulation of the Src family of PTKs, and signal transduction through the integrins.  相似文献   

9.
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.  相似文献   

10.
Activation of phospholipase C-gamma2 (PLCgamma2) is the critical step in B cell antigen receptor (BCR)-coupled calcium signaling. Although genetic dissection experiments on B cells have demonstrated that Bruton's tyrosine kinase (Btk) and Syk are required for activating PLCgamma2, the exact activation mechanism of PLCgamma2 by these kinases has not been established. We identify the tyrosine residues 753, 759, 1197, and 1217 in rat PLCgamma2 as Btk-dependent phosphorylation sites by using an in vitro kinase assay. To evaluate the role of these tyrosine residues in phosphorylation-dependent activation of PLCgamma2, PLCgamma2-deficient DT40 cells were reconstituted with a series of mutant PLCgamma2s in which the phenylalanine was substituted for tyrosine. Substitution of all four tyrosine residues almost completely eliminated the BCR-induced PLCgamma2 phosphorylation, indicating that these residues include the major phosphorylation sites upon BCR engagement. Cells expressing PLCgamma2 with a single substitution exhibited some extent of reduction in calcium mobilization, whereas those expressing quadruple mutant PLCgamma2 showed greatly reduced calcium response. These findings indicate that the phosphorylations of the tyrosine residues 753, 759, 1197, and 1217, which have been identified as Btk-dependent phosphorylation sites in vitro, coordinately contribute to BCR-induced activation of PLCgamma2.  相似文献   

11.
Phospholipase Cgamma1 (PLCgamma1) represents a major downstream signalling component of the epidermal growth factor (EGF) receptor (EGFR) and is activated by tyrosine phosphorylation. Here we show for the first time that cellular knockdown of protein kinase Cepsilon (PKCepsilon) leads to decreased activation of PLCgamma1 by EGF and that EGF induces tyrosine phosphorylation of PKCepsilon as well as association of PKCepsilon with both EGFR and PLCgamma1. Using several mutants, co-immunoprecipitation and phosphopeptide-based pull-down experiments we found that in dependency on c-Src and EGF-stimulation PKCepsilon may bind to the c-Src-specific phosphorylation site pY845-EGFR. Furthermore, we identified a single tyrosine residue, PKCepsilon-Y573, within a consensus binding sequence of the C-terminal SH2 domain of PLCgamma1 which is critical for both tyrosine phosphorylation of PKCepsilon and its association with PLCgamma1. Thus, in particular cells and independent of the kinase activity PKCepsilon may form a signalling module with EGFR and PLCgamma1. Thereby the tyrosine phosphorylation of PLCgamma1 via the EGFR may be facilitated. This is a novel function of PKCepsilon upstream of PLCgamma1 and a novel paradigm for the EGF-induced formation of multi-protein complexes.  相似文献   

12.
S3-v-erbB is a retroviral oncogene that encodes a ligand-independent, transforming mutant of the epidermal growth factor receptor. This oncogene has been shown to be sarcomagenic in vivo and to transform fibroblasts in vitro. Our previous studies (McManus, M. J., Lingle, W. L., Salisbury, J. L., and Maihle, N. J. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11351-11356) showed that expression of S3-v-erbB in primary fibroblasts results in the tyrosine phosphorylation of caldesmon (CaD), an actin- and calmodulin-binding protein. This phosphorylation is transformation-associated, and the phosphorylated form of CaD is associated with a signaling complex consisting of Shc, Grb2, and Sos in transformed fibroblasts. To identify the tyrosine phosphorylation site(s) in the CaD molecule and to further elucidate the functional role of CaD tyrosine phosphorylation in S3-v-ErbB oncogenic signaling, we have generated a series of mutant CaDs in which one or more tyrosine residues have been replaced with phenylalanine. Using a CaD null cell line, DF1 cells (an immortalized chicken embryo fibroblast cell line), and transient transfection assays, we demonstrated that Tyr-27 and Tyr-393 are the major sites of tyrosine phosphorylation on CaD. Interestingly, Tyr-27 is located within the myosin binding domain of CaD, and Tyr-393 is adjacent to one of the major actin binding and actomyosin ATPase inhibitory domains. Our studies also show that the tyrosine phosphorylation of CaD enhances its binding to the Shc.Grb2 complex. Specifically, replacement of Tyr-27, but not of Tyr-165 or Tyr-393, significantly reduces the ability of CaD to interact with the Shc. Grb2 complex. Together, these studies demonstrate that the major sites of tyrosine phosphorylation on CaD are located in the myosin and actin binding domains of CaD and that Tyr-27 is the major tyrosine phosphorylation site through which CaD interacts with the Shc.Grb2 complex.  相似文献   

13.
Children exposed to radioactive iodine after the Chernobyl reactor accident frequently developed papillary thyroid carcinomas (PTC). The predominant molecular lesions in these tumors are rearrangements of the RET receptor tyrosine kinase gene. Various types of RET rearrangements have been described. More than 90% of PTC with RET rearrangement exhibit a PTC1 or PTC3 type of rearrangement with an inversion of the H4 or ELE1 gene, respectively, on chromosome 10. To obtain closer insight into the mechanisms underlying PTC3 inversions, we analyzed the genomic breakpoints of 22 reciprocal and 4 nonreciprocal ELE1 and RET rearrangements in 26 post-Chernobyl tumor samples. In contrast to previous assumptions, an accumulation of breakpoints at the two Alu elements in the ELE1 sequence was not observed. Instead, breakpoints are distributed in the affected introns of both genes without significant clustering. When compared to the corresponding wildtype sequences, the majority of breakpoints (92%) do not contain larger deletions or insertions. Most remarkably, at least one topoisomerase I site was found exactly at or in close vicinity to all breakpoints, indicating a potential role for this enzyme in the formation of DNA strand breaks and/or ELE1 and RET inversions. The presence of short regions of sequence homology (microhomologies) and short direct and inverted repeats at the majority of breakpoints furthermore indicates a nonhomologous DNA end-joining mechanism in the formation of chimeric ELE1/Ret and Ret/ELE1 genes.  相似文献   

14.
Binding of aptamers is dependent on their target conformation, which in turn is conditioned by the target's environment. Therefore, selection of aptamers against the active forms of membrane proteins could require their correct membrane insertion in order to maintain their native conformation. Here, we compare different SELEX strategies to identify aptamers against the mutated form of the membrane receptor tyrosine kinase RET(C634Y). (1) selections S1 and S2 against living cells transformed to express the protein yielded a minority of RET-targeted aptamers while the bulk of aptamers recognized more abundant membrane proteins, suggesting that a high level of expression of the target protein is crucial to allow the isolation of aptamers at cell surface; (2) selection S3 against the purified extracellular moiety of RET yielded aptamers unable to recognize RET expressed at the cell membrane; (3) crossover selections S4 and S5 alternating cells and recombinant RET enhanced the enrichment of the aptamers directed against RET; however, these aptamers displayed a weaker affinity for Ret than those obtained with S1 and S2. In our case, using transformed cell lines as the partitioning matrix during SELEX appears to be essential in order to obtain aptamers able to recognize the RET receptor tyrosine kinase in its physiologic environment.  相似文献   

15.
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are neurotrophic factors that influence several aspects of the developing and injured nervous system. GFLs signal through a common receptor tyrosine kinase (Ret) and one of the four ligand-binding co-receptors (GFRalpha1 to 4). Ligand-induced translocation of Ret to lipid rafts, where it interacts with the nonreceptor tyrosine kinase Src, is a prerequisite for full biological activity of these neurotrophic factors. This interaction and subsequent activation of Src are required for GFL-mediated neuronal survival, neurite outgrowth, or cell proliferation. Here we show by multiple approaches that Ret tyrosine 981 constitutes the major binding site of the Src homology 2 domain of Src and therefore the primary residue responsible for Src activation upon Ret engagement. Other tyrosines such as 1015 and 1029 may contribute to the overall interaction between Ret and Src, as judged by overexpression experiments. By generating a phosphospecific antibody, we demonstrate that tyrosine 981 is a novel autophosphorylation site in Ret. Importantly, we also show that this tyrosine becomes phosphorylated in dissociated sympathetic neurons after ligand stimulation. Mutation of tyrosine 981 to phenylalanine reduces GDNF-mediated survival in a transfected cerebellar granule neuron paradigm.  相似文献   

16.
Receptor tyrosine kinases generally act by forming phosphotyrosine-docking sites on their own endodomains that propagate signals through cascades of post-translational modifications driven by the binding of adaptor/effector proteins. The pathways that are stimulated in any given receptor tyrosine kinase are a function of the initial docking sites that are activated and the availability of downstream participants. In the case of the Trk receptors, which are activated by nerve growth factor, there are only two established phosphotyrosine-docking sites (Tyr-490 and Tyr-785 on TrkA) that are known to be directly involved in signal transduction. Taking advantage of this limited repertoire of docking sites and the availability of PC12 cell lines stably transfected with chimeric receptors composed of the extracellular domain of the PDGF receptor and the transmembrane and intracellular domains of TrkA, the downstream TrkA-induced phosphoproteome was assessed for the “native” receptor and mutants lacking Tyr-490 or both Tyr-490 and Tyr-785. Basal phosphorylation levels were compared with those formed after 20 min of stimulation with PDGF. Several thousand phosphopeptides were identified after TiO2 enrichment, and many were up- or down-regulated by receptor activation. The modified proteins in the native sample contained many of the well established participants in TrkA signaling. The results from the mutant receptors allowed grouping of these downstream targets by their dependence on the two characterized docking site(s). A clear subset that was not dependent on either Tyr-490 or Tyr-785 emerged, providing direct evidence that there are other sites on TrkA that are involved in downstream signaling.  相似文献   

17.
The receptor tyrosine kinase RET, with a known role in embryonic development and in human pathologies, is alternatively spliced to yield at least two functional isoforms, which differ only in their carboxyl terminal. Enigma protein is a member of the PDZ-LIM family and is known to interact with the short isoform of RET/PTC2, a chimeric oncoprotein isolated from papillary thyroid carcinoma. Here, we show that Enigma also interacts in intact cells with the short isoform of RET-wt and of its pathologic mutants associated to MEN2 syndromes, RET-C634R and RET-M918T. In contrast, Enigma binds all the corresponding RET long isoforms very poorly and colocalizes with short but not long RET/PTC2 isoforms. The RET docking tyrosine for Enigma is the last but one before the divergence between the two isoforms and we demonstrated that short-isoform-specific amino acid residues +2 to +4 to this tyrosine are required for the interaction of RET/PTC2 with Enigma.  相似文献   

18.
A thiol-reactive membrane-associated protein (TRAP) binds covalently to the cytoplasmic domain of the human insulin receptor (IR) beta-subunit when cells are treated with the homobifunctional cross-linker reagent 1,6-bismaleimidohexane. Here, TRAP was found to be phospholipase C gamma1 (PLCgamma1) by mass spectrometry analysis. PLCgamma1 associated with the IR both in cultured cell lines and in a primary culture of rat hepatocytes. Insulin increased PLCgamma1 tyrosine phosphorylation at Tyr-783 and its colocalization with the IR in punctated structures enriched in cortical actin at the dorsal plasma membrane. This association was found to be independent of PLCgamma1 Src homology 2 domains, and instead required the pleckstrin homology (PH)-EF-hand domain. Expression of the PH-EF construct blocked endogenous PLCgamma1 binding to the IR and inhibited insulin-dependent phosphorylation of mitogen-activated protein kinase (MAPK), but not AKT. Silencing PLCgamma1 expression using small interfering RNA markedly reduced insulin-dependent MAPK regulation in HepG2 cells. Conversely, reconstitution of PLCgamma1 in PLCgamma1-/- fibroblasts improved MAPK activation by insulin. Our results show that PLCgamma1 is a thiol-reactive protein whose association with the IR could contribute to the activation of MAPK signaling by insulin.  相似文献   

19.
20.
p56lck, a lymphocyte-specific tyrosine protein kinase, binds to the cytoplasmic tails of the T-cell surface molecules CD4 and CD8. Cross-linking of CD4 expressed on the surface of murine thymocytes, splenocytes, and CD4+ T-cell lines induced tyrosine phosphorylation of p56lck dramatically. Cross-linking of CD8 stimulated tyrosine phosphorylation of p56lck strongly in murine L3 and GA4 cells, slightly in splenocytes, but not detectably in thymocytes. Differing effects of cross-linking on in vitro tyrosine kinase activity of p56lck were observed. An increase in the in vitro kinase activity of p56lck, when assayed with [Val5]-angiotensin II as an exogenous substrate, was found to accompany cross-linking of CD4 in three cell lines. No stimulation of the in vitro kinase activity, however, was observed after cross-linking of CD8 in L3 cells. The phosphorylation of p56lck at Tyr-394, the autophosphorylation site, was stimulated by cross-linking in all cell lines examined. Tyr-394 was the predominant site of increased tyrosine phosphorylation in two leukemic cell lines. In the other two cell lines, the phosphorylation of both Tyr-394 and an inhibitory site, Tyr-505, was found to increase. In contrast to cross-linking with antibodies, no striking increase in the tyrosine phosphorylation of p56lck was stimulated by antigenic stimulation. Therefore, the effect of antibody-induced aggregation of CD4 and CD8 on the tyrosine phosphorylation of p56lck differs, at least quantitatively, from what occurs during antigen-induced T-cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号