首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
脂肪酶固定化及其稳定性研究   总被引:7,自引:0,他引:7  
目的:研究脂肪酶的固定化工艺及其稳定性。方法:以四甲氧基硅烷(TMOS)和甲基三甲氧基硅烷(MTMS)为前驱体的溶胶-凝胶法(sol-gel)固定化黑曲霉属脂肪酶。结果:最优固定化条件是:TMOS 0.5mmol、MTMS 2.5mmol,水与硅烷前驱体摩尔比(R)12,PEG400 120μL,给酶量120mg。酶的固定化效率为93.7%,比活力为游离酶的2.2倍。固定化酶和游离酶在60℃处理2h,其残余酶活分别为91.8%和0;在pH 11的缓冲液中处理2h,其残余酶活分别为95.2%和82%。结论:酶经固定化后其活力、热稳定性和pH稳定性均有提高。  相似文献   

2.
固定化脂肪酶性质及其应用研究   总被引:8,自引:0,他引:8  
利用以四甲氧基硅烷(TMOS)和甲基三甲氧基硅烷(MTMS)为前驱体的溶胶-凝胶法(sol-gel)固定洋葱假单胞菌属脂肪酶,考查了固定化酶和游离酶的酶学性质及催化不同油脂酯交换合成生物柴油的情况。结果表明,80℃以下固定化酶能保持80%以上的酶活,而游离酶在50℃以后活力急剧下降,到80℃残余酶活约为10%;固定化酶在体积分数50%的甲醇中处理48 h能保持85%的酶活,在体积分数90%的乙醇中处理48h能保持31%的酶活,而游离酶残余酶活只有69%和0;在酯交换反应中固定化酶的催化效率比游离酶高10%~20%,且固定化酶重复使用11次后仍能保持60%的酶活。结果显示,酶经过固定化后稳定性和催化活性显著提高。  相似文献   

3.
脂肪酶的固定化及其性质研究   总被引:4,自引:0,他引:4  
曹国民  盛梅 《生物技术》1997,7(3):14-17
采用吸附与交联相结合的方法国定化脂肪酶,研究了脂肪酶固定化的工艺条件,并考察了固定化脂肪酶的催化性能和稳定性。试验结果表明,WA20树脂固定化脂肪酶的最适条件是:酶液pH7.0、给酶量300IU/g树脂、固定时间8h,所得固定化脂肪酶的活力约为165IU/g树脂;固定化酶稳定性较高,在冰箱内贮存6个月活力没有下降,操作半衰期约为750h,而未用戌二醛文联的固定化脂肪酶操作半衰期仅约290h;固定化脂肪酶催化橄榄油水解的最适条件是:PH8.0、温度55℃、底物浓度60%(V/V)、搅拌转速500r/m。  相似文献   

4.
蚕丝固定化脂肪酶的研究   总被引:22,自引:0,他引:22       下载免费PDF全文
研究了蚕丝固定化脂肪酶的工艺条件,并考察了固定化脂肪酶的稳定性。试验结果表明:蚕丝与对-β-硫酸酯乙砜基苯胺(SESA)进行反应的最适条件是PH=10.8,SESA:2.0g/g蚕丝,反应生成的对氨基苯磺酰乙基蚕丝(ABSE-蚕丝)经重氮化后与脂肪酶偶联的最适条件是:pH=7.5,偶联时间>10h。加酶量为168~308u/g蚕丝时,所得固定化脂肪酶活力为106~160u√g蚕丝.此时固定化冀的活力回收率较高(>52%)。固定化脂肪酶稳定性较高.其操作半衰期约为250h。  相似文献   

5.
微生物脂肪酶稳定性研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
徐碧林  朱庆 《微生物学通报》2020,47(6):1958-1972
脂肪酶广泛应用于食品、药物、生物燃料、诊断、生物修复、化学品、化妆品、清洁剂、饲料、皮革和生物传感器等工业领域,微生物脂肪酶是商品化脂肪酶的重要来源.高温、酸性、碱性和有机溶剂等恶劣的工业生产环境使得脂肪酶的进一步工业应用受到限制,获取稳定性好的脂肪酶成为打破这一限制的关键环节.本文重点对提高微生物脂肪酶稳定性的策略进...  相似文献   

6.
以海泡石作为猪胰脂肪酶(PPL)的固定化载体,考察采用物理吸附的方法制备固定化脂肪酶的条件。结果表明:在固载时间4 h、反应磷酸盐(PBS)溶液pH 6.0、反应温度25℃时,可达最大比酶活309 U/g,固定化酶的化学稳定性和热稳定性均较高。同时利用红外谱仪(FT-IR)和扫描电子显微镜(SEM)的分析手段对固定化猪胰脂肪酶试样进行分析,进一步确定了海泡石材料在固定化酶中的作用。  相似文献   

7.
固定化脂肪酶合成二元酸酯   总被引:4,自引:0,他引:4       下载免费PDF全文
The syntheses of dicarboxylic esters by immobilized lipase from Candida sp. -1619 were investigated. The reaction system was composed of 1 mmol dicarboxylic acid, 2 mmol alcohol, 3 mL hexane and 15 mg celite-adsorbed im mobilized lipase(300 u), in a closed 100 mL Erlenmeyer flask, shaken at 40°C for 5h. Sebacic acid was the best substrate among nine dicarboxylic acids selected. Among the 18 saturated fatty n-alcohols, the alcohols with carbon chain length rangin from C4~C18 had good reactivity. The primary alcohols had much better reactivities than corresponding secondary alcohols and multihydroxy-alcohols. Tertiary alcohols showed no reactivity. Hydrocarbons, benzene, toluene, xylene and te trachloride were favorite reactants among 15 organic solvents selected, in none-solvent stationary system, (5 mmol sebacic acid, 10 mmol dndecanol, 150 mg immobilized lipase(3000 u))reacted without plug for 3.5h, the optimum temperature was 60°C. The conversion degree was over 92% when reaction carried out at 50~90°C for 17h. The suitable reaction pH ranged from 6~8. The reactant was developed on GF254 plate(hexane ethyl ether acetic acid = 30201 ( V V V).There were three spots with different Rf value at 0.96, 0.55 and 0 corresponding to product, oleyl alcohol and sebacic acids, respectively.  相似文献   

8.
诱变选育脂肪酶高产菌株及其脂肪酶固定化   总被引:1,自引:0,他引:1  
以紫外和微波复合诱变选育脂肪酶产生菌 Rhizopus sp. RXF12,获得高产突变株RZ13,其脂肪酶摇瓶发酵单位是出发株的2.62倍。菌株经多次传代,遗传性状稳定。对RZ13菌株的发酵条件进行了正交优化,在25 ℃、pH 8.0的条件下,接入5 %(v/v)的RZ13菌株单孢子悬液 (107个/ml) 振荡培养84 h,达到RZ13菌株最佳产酶状态,脂肪酶活可达95.08 U/ml。考察了脂肪酶性质,在低于40 ℃,pH 7.0~9.0范围内脂肪酶活稳定。经载体筛选及固定化过程优化,选用镁铝水滑石25℃吸附4 h,对RZ13脂肪酶进行了固定化。结果表明,固定化酶的最适作用温度为35~55℃,pH为7.5~9.0,较游离酶的均有较大扩展。  相似文献   

9.
化学修饰的固定化的脂肪酶在有机溶剂中的催化...   总被引:3,自引:0,他引:3  
  相似文献   

10.
高分子载体固定化酵母脂肪酶的研究   总被引:2,自引:0,他引:2  
  相似文献   

11.
    
This study was designed to investigate the stability of a lipase fused with a cellulose-binding domain (CBD) to cellulase. The fusion protein was derived from a gene cluster of a CBD fragment of a cellulase gene inTrichoderma hazianum and a lipase gene inBacillus stearothermophilus L1. Due to the CBD, this lipase can be immobilized to a cellulose material. Factors affecting the lipase stability were divided into the reaction-independent factors (RIF), and the reaction-dependent factors (RDF). RIF includes the reaction conditions such as pH and temperature, whereas substrate limitation and product inhibition are examples of RDF. As pH 10 and 50°C were found to be optimum reaction conditions for oil hydrolysis by this lipase, the stability of the free and the immobilized lipase was studied under these conditions. Avicel (microcrystal-line cellulose) was used as a support for lipase immobilization. The effects of both RIF and RDF on the enzyme activity were less for the immobilized lipase than for the free lipase. Due to the irreversible binding of CBD to Avicel and the high stability of the immobilized lipase, the enzyme activity after five times of use was over 70% of the initial activity.  相似文献   

12.
The use of biopolymer compounds as matrices for enzyme immobilization is currently a focus of increasing interest. In the present work we propose the use of Luffa cylindrica vegetable sponges as a support for the lipase extracted from Aspergillus niger. Effectiveness of immobilization was analyzed using Fourier transform infrared spectroscopy, elemental analysis and the Bradford method. An initial enzyme solution concentration of 1.0 mg/mL and an immobilization time of 12 h were selected as the parameters that produce a system retaining the highest hydrolytic activity (84% of free enzyme). The resulting biocatalyst system also exhibited high thermal and chemical stability, reusability and storage stability, which makes it a candidate for use in a wide range of applications. Kinetic parameters for the native and immobilized lipase were also calculated. The value of the Michaelis–Menten constant for the immobilized lipase (0.47 mM) is higher than for the free enzyme (0.21 mM), which indicates that the adsorbed enzyme exhibits a lower affinity to the substrate than native lipase. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:657–665, 2016  相似文献   

13.
Nerve growth factor (NGF) interacts with a cell surface receptor on responsive neurons to initiate a series of cellular events leading to neuronal survival and/or differentiation. The first step in this process is the binding of NGF to a low affinity and/or a high affinity receptor. In the present report, we have studied the conformation and stability of recombinant receptor extracellular domain (RED) from the human low affinity receptor and the structural basis of its interaction with NGF. Circular dichroism (CD) studies indicate that the RED is primarily random coil in nature with little regular secondary structure. Thermal stability studies have shown that this irregular conformation is a specific structure that can undergo a reversible two-state thermal denaturation with a concomitant fluorescent and CD change. During heating at 100 degrees C for 15 min, the structure of RED is sufficiently unfolded for a reducing agent, dithiothreitol, to inactivate the receptor toward NGF binding and cross-linking. The complex formation between the RED and NGF has been examined by differential CD measurements, and we have shown that a small, reproducible change in conformation occurs in RED or NGF upon interaction. These results are interpreted in terms of the initiation of NGF cell surface binding and possible modes of signal transduction.  相似文献   

14.
A novel technique for immobilization of Candida rugosa lipase onto anionic colloidal gas aphrons (CGAs) is described. CGAs are spherical microbubbles (10-100 microm) composed of an inner gas core surrounded by a surfactant shell. In this initial study, greater than 80% lipase (w/w) was effectively retained on the CGAs. Leakage of protein from the CGAs and the activity of the adsorbed lipase decreased with increasing enzyme loading; this indicates that multilayers of lipase may be adsorbing onto the CGAs. The CGA-immobilised lipase displayed normal Michaelis-Menten dependence on substrate concentration and also exhibited greater activity than the free enzyme.  相似文献   

15.
    
The lipase from Burkholderia cepacia, formerly known as Pseudomonas cepacia lipase, is a commercial enzyme in both soluble and immobilized forms widely recognized for its thermal resistance and tolerance to a large number of solvents and short‐chain alcohols. The main applications of this lipase are in transesterification reactions and in the synthesis of drugs (because of the properties mentioned above). This review intends to show the features of this enzyme and some of the most relevant aspects of its use in different synthesis reactions. Also, different immobilization techniques together with the effect of various compounds on lipase activity are presented. This lipase shows important advantages over other lipases, especially in reaction media including solvents or reactions involving short‐chain alcohols.  相似文献   

16.
随着全球能源需求量的不断上升和日益加剧的环境压力,固定化脂肪酶在可持续生物柴油合成中的应用受到广泛关注.纳米材料,包括纳米粒子(磁性和非磁性)、碳纳米管和纳米静电纺丝,具有比表面积大、结构稳定、易于功能化修饰等优势,是固定化脂肪酶领域的重要载体之一.综述了纳米材料作为载体在脂肪酶固定化中的应用,重点介绍这类生物催化剂在...  相似文献   

17.
    
Candida rugosa lipase was immobilized by first cross-linking with glutaraldehyde and then entrapping in calcium alginate beads. The presence of 2-propanol during cross-linking markedly improved the enzyme activity and activity recovery. Maximal enzyme activity (2.1?mmol?h?1?g?1 immobilized conjugate, wet weight) and activity recovery (117%) were observed at 30% (v/v) 2-propanol for hydrolysis of olive oil, which were 1.7 and 2.0 times higher than those of the immobilized enzyme prepared in the absence of 2-propanol. The half-life of the immobilized lipase prepared by entrapment after cross-linking in 30% 2-propanol was 1.6 times higher than that prepared by entrapment of the native lipase without cross-linking and 2-propanol pretreatment. The enantioselectivity of the former was 11 times higher than that of the latter for hydrolysis of racemic ketoprofen ethyl ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号