首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evacuation of food from the stomach is probably not a continuous smooth process but may occur in a pulse-like (step-wise) fashion. It is hypothesised that the pattern of emptying is influenced by feedback signals from receptors located in the upper intestinal tract and by factors affecting the rate of physical/chemical breakdown of the food particles. Mathematical functions used for describing evacuation patterns imply that emptying is continuous and they are, therefore, at best, only approximations. It was predicted that different mathematical expressions would give best fit to empirical data from gastric evacuation studies dependent upon the experimental conditions employed. An analysis of published data supported the predictions and revealed that an exponential function best described the evacuation of small, easily digested prey items, but a linear expression gave the best fit to data of the emptying of large food items. It is suggested that differences in surface-to-volume ratios between large and small food particles and the friabilities of different food types are important in determining the pattern of emptying. Whilst dietary energy content also appears to be an important factor in the governing of gastric evacuation, it appears that emptying pattern in fish species is rather less sensitive to changes in dietary composition than is gastric emptying in mammals.  相似文献   

2.
Particles 2 mm or smaller may be passed relatively easily through the pylorus of the cod, Gadus morhua L., but, under some conditions, 5 mm particles are held in the stomach for prolonged periods. The emptying of indigestible particles appears to be impaired by the consumption of additional meals, and prolonged retention of these particles may occur in fish fed multiple meals. The findings agree in general with those reported for mammals and the results are discussed in relation to mechanisms thought to control gastric motor activity patterns.  相似文献   

3.
The control of gut motility   总被引:6,自引:0,他引:6  
Gut motility in non-mammalian vertebrates as in mammals is controlled by the presence of food, by autonomic nerves and by hormones. Feeding and the presence of food initiates contractions of the stomach wall and subsequently gastric emptying, peristalsis, migrating motor complexes and other patterns of motility follow. This overview will give examples of similarities and differences in control systems between species. Gastric receptive relaxation occurs in fish and is an enteric reflex. Cholecystokinin reduces the rate of gastric emptying in fish as in mammals. Inhibitory control of peristalsis is exerted, e.g. by VIP, PACAP, NO in fish and amphibians, while excitatory stimuli arise from nerves releasing tachykinins, acetylcholine or serotonin (5-HT). In crocodiles, we have found the presence of the same nerve types, although the effects on peristalsis have not been studied. Recent studies on signal transduction in the gut smooth muscle of fish and amphibians suggest that external Ca2+ is of great importance, but not the only source of Ca2+ recruitment in tachykinin-, acetylcholine- or serotonin-induced contractions of rainbow trout and Xenopus gastrointestinal smooth muscle. The effect of acetylcholine involves reduction of cAMP-levels in the smooth muscle cells. It is concluded that, in general, the control systems in non-mammalian vertebrates are amazingly similar between species and animal groups and in comparison with mammals.  相似文献   

4.
Leptin regulates energy homeostasis and body weight by balancing energy intake and expenditure. It was recently reported that leptin, released into the gut lumen during the cephalic phase of gastric secretion, is capable of initiating intestinal nutrient absorption. Vagal afferent neurons also express receptors for both CCK and leptin, which are believed to interact in controlling food intake. The present study was undertaken to investigate the central and peripheral effects of leptin on gastric emptying rate. Under anesthesia, male Sprague-Dawley rats (250-300 g) were fitted with gastric Gregory cannulas (n=12) and some had additional cerebroventricular cannulas inserted into their right lateral ventricles. Following recovery, the rate of gastric emptying of saline (300 mOsm/kg H(2)O) was determined after instillation into the gastric fistula (3 ml, 37 degrees C, containing phenol red, 60 mg/l as a non-absorbable dilution marker). Gastric emptying rate was determined from the volume and phenol red concentrations recovered after 5 min. Leptin, injected intraperitoneally (i.p.; 10, 30, 60, 100 microg/kg) or intracerebroventricularly (i.c.v.; 5, 15 microg/rat) 15 min before the emptying, delayed gastric emptying rate of saline at the dose of 30 microg/kg or 15 microg/rat (p<0.001). When CCK(1) receptor blocker L-364,718 (1 mg/kg, i.p.), CCK(2) receptor blocker L-365,260 (1 mg/kg, ip) or adrenergic ganglion blocker bretylium tosylate (15 mg/kg, i.p.) was administered 15 min before ip leptin (30 microg/kg) injections, leptin-induced delay in gastric emptying was abolished only by the CCK(1) receptor blocker (p<0.001). However, the inhibitory effect of central leptin on gastric emptying was reversed by adrenergic blockade, but not by either CCK antagonists. Our results demonstrated that leptin delays gastric emptying. The peripheral effect of leptin on gastric motility appears to be mediated by CCK(1) receptors, suggesting the release of CCK and the involvement of vagal afferent fibers. On the other hand, the central effect of leptin on gastric emptying is likely to be mediated by adrenergic neurons. These results indicate the existence of a functional interaction between leptin and CCK receptors leading to inhibition of gastric emptying and short-term suppression of food intake, providing an additional feedback control in producing satiety.  相似文献   

5.
Previous reports have demonstrated that systemic injection of cholecystokinin (CCK) in rats produces dose-related decreases in food intake, increases in neurohypophyseal secretion of oxytocin (OT), and decreases in gastric emptying. The present studies determined whether systemic injection of bombesin (BBS), another peptide that potently reduces food intake in rats, had similar effects on OT secretion and gastric emptying. Although BBS produces a dose-dependent inhibition of food intake, even very high doses did not significantly affect plasma OT levels and only slightly decreased rates of gastric emptying. Consequently, despite their similar inhibitory effects on food intake, BBS does not appear to activate the same network of central nervous system pathways as does CCK in rats. However, parallel studies in monkeys demonstrated that systemic injection of BBS was effective in stimulating neurohypophyseal secretion of vasopressin rather than OT, in a pattern both qualitatively and quantitatively analogous to the effects of CCK in this species. Together with previous findings that BBS more potently inhibits gastric emptying in primates than in rats, these results therefore also suggest the presence of significant species differences in the central mechanisms by which BBS acts to reduce food intake.  相似文献   

6.
Leptin is a hormone that plays a central role in the regulation of food intake and energy expenditure. Originally discovered in mature white adipocytes, it was subsequently isolated from the gastric mucosa. This tissue contains a large number of epithelial endocrine and exocrine cells secreting leptin in the blood stream and in the gastric lumen, respectively. Light and electron microscopy have shown that adipocytes and gastric epithelial cells contain leptin along their rough endoplasmic reticulum-Golgi-granules secretory pathway. Both tissues synthesize a soluble form of the leptin receptor that is secreted bound to leptin in the blood and into the gastric juice. This soluble receptor protect leptin and enhances its half-life. Despite the similarities in the mechanisms of leptin secretion by adipocytes and gastric epithelial cells, they are in fact radically different. In gastric cells leptin follows a rapid regulated secretion pathway whereas adipocytes secrete leptin in a constitutive slow fashion. These differences can be explained by the specific roles play by leptin originating from these two different tissues. Gastric leptin is involved in the short-term regulation of digestion, including delay of gastric emptying, absorption of nutrients by the intestinal wall and secretion of gastric, intestinal and pancreatic hormones. On the other hand, leptin secreted by white adipocytes acts primarily on the hypothalamus for the long-term regulation of food intake. Therefore, the coordination of adipose and gastric leptins ensures the proper management of food processing and energy storage.  相似文献   

7.
Growth hormone (GH) is known to play a key role in the regulation of body growth and metabolism. Similar to mammals, GH secretion in fish is under the control of hypothalamic factors. Besides, signals generated within the pituitary and/or from peripheral tissues/organs can also exert a feedback control on GH release by effects acting on both the hypothalamus and/or anterior pituitary. Among these feedback signals, the functional role of IGF is well conserved from fish to mammals. In contrast, the effects of steroids and thyroid hormones are more variable and appear to be species-specific. Recently, a novel intrapituitary feedback loop regulating GH release and GH gene expression has been identified in fish. This feedback loop has three functional components: (i) LH induction of GH release from somatotrophs, (ii) amplification of GH secretion by GH autoregulation in somatotrophs, and (iii) GH feedback inhibition of LH release from neighboring gonadotrophs. In this article, the mechanisms for feedback control of GH synthesis and secretion are reviewed and functional implications of this local feedback loop are discussed. This intrapituitary feedback loop may represent a new facet of pituitary research with potential applications in aquaculture and clinical studies.  相似文献   

8.
PP administration induces negative energy balance by suppressing food intake and gastric emptying while increasing energy expenditure in rodents. The mechanism of PP actions involves the changes in the expression of hypothalamic feeding-regulatory peptides and the activity of the vago-vagal and vago-sympathetic reflex arc. PP-overexpressing mice we developed exhibited the thin phenotype with decreased food intake and gastric emptying rate. Plasma cholecystokinin (CCK) concentrations were increased in the transgenic mice and CCK-1 receptor antagonist improved the anorexia of the animals. These results, together with the previous notion of PP as an anti-CCK hormone in pancreatic exocrine secretion and gallbladder contraction, indicate that PP-CCK interactions may be either antagonistic or synergistic and the transgenic mice may exhibit the mixed phenotype by overproduction of PP and CCK.  相似文献   

9.
目的:观察Nesfatin-1对大鼠摄食、胃酸分泌、胃运动及胃排空的影响并探究其可能机制。方法:将大鼠随机分为摄食实验组、胃酸实验组、胃运动实验组以及胃排空实验组。大鼠经腹内侧核置管后给予nasfatin-1,检测大鼠摄食量,使用Na OH滴定法测定大鼠胃酸分泌,记录清醒大鼠胃运动,以比色法测定大鼠胃排空。结果:低剂量和高剂量nesfatin-1均减少2小时累积食物摄入量;高剂量组4小时累积食物摄入量仍显著低于NS对照组。Nesfatin-1能够抑制2-DG对胃酸分泌的促进作用。SHU9119能够部分阻断nesfatin-1对2-DG的抑制作用。Nesfatin-1能够抑制胃运动及胃排空,SHU9119可部分阻断nesfatin-1对胃运动及胃排空的抑制作用。结论:Nesfatin-1能够调控大鼠摄食、胃酸分泌、胃运动及胃排空,黑皮质素信号通路可能也参与该调控过程。  相似文献   

10.
Gastric emptying rate in Pleuronectes platessa L.   总被引:2,自引:0,他引:2  
X-ray studies of gastric emptying of Pleuronectes platessa force-fed a moist, artificial diet give the relationship:
where GET is gastric emptying time (h), S is meal size (g), W is body weight (g) and T is temperature (°C).
The corresponding gastric emptying curve is predicted to be:
where stomach contents (g net weight) are S 0 at start and St at time th. Direct observations of residual stomach contents using serial slaughter are in close agreement with the predicted curve, save for small plaice (below 50 g body weight) which empty at only 50–60% of the rate found in larger fish.
The small effects of body weight on gastric emptying rate may reflect the relatively small role of the stomach [Volume (ml) = 0.024 body weight (g)] in digestion when compared with other flatfish.
The emptying curve established here can be used in field studies to estimate feeding rate on natural food items, provided fish greater than 50 g body weight are used and the energy density of the food is greater than 0.5 kcal/g wet weight. Smaller fish will have emptying rates which are only 30–60% of those found in larger fish; the change appears to be abrupt and corresponds to the size at which young plaice move offshore from their nursery grounds.  相似文献   

11.
Diverse physiological and behavioural mechanisms allow animals to effectively deal with stressors, but chronic activation of the stress axis can have severe consequences. We explored the effects of chronic social stress on agonistic behaviour and gall bladder function, a critical but widely neglected component of stress-induced gastrointestinal dysfunction. Prolonged cohabitation with dominant individuals elicited behavioural modifications and dramatically increased bile retention in subordinate convict cichlid fish (Archocentrus nigrofasciatum). The key predictor of gall bladder hypertrophy was social subordination rather than status-related differences in food intake or body size. Stress-induced inhibition of gall bladder emptying could affect energy assimilation such that subordinate animals would not be able to effectively convert energy-rich food into mass gain. These results parallel changes in gall bladder function preceding cholesterol gallstone formation in humans and other mammals. Thus, social stress may be an important diagnostic criterion in understanding pathologies associated with gall bladder dysfunction.  相似文献   

12.
目的:探讨下丘脑室旁核orexin-A对大鼠摄食和胃动力影响及调控机制。方法:采用免疫组化观察下丘脑室旁核(paraventricular nucleus,PVN)orexin受体表达情况;PVN注射orexin-A观察大鼠摄食、胃运动、胃酸分泌和胃排空的改变。结果:免疫组化实验显示大鼠PVN中存在orexin受体免疫阳性细胞。PVN注射orexin-A后,大鼠前三小时摄食增加,6 h和24 h摄食无显著改变。PVN微量注射orexin-A后,大鼠胃运动幅度和频率增加、胃排空增快并且胃酸分泌增多。[D-Lys-3]-GHRP-6可部分阻断orexin-A对摄食、胃运动、胃排空和胃酸分泌的促进作用,SB334867可完全阻断orexin-A对胃运动、胃排空和胃酸分泌的促进作用。结论:下丘脑室旁核orexin-A可能通过生长激素促泌素GHSR受体信号通路调控大鼠摄食及胃功能。  相似文献   

13.
The effects of corticotropin-releasing factor (CRF) on gastric emptying of a saline solution was further investigated in six dogs prepared with gastric fistulas and chronic cerebroventricular guides and in four other dogs with chronic gastric fistulas and pancreatic (Herrera) cannulas. Intravenous infusion of CRF significantly inhibited gastric emptying whereas intracerebroventricular injection of CRF had no effect. Pharmacologic blockade of β-adrenergic system by propranolol did not modify intravenous CRF induced delay in gastric emptying. Intravenous CRF did not influence basal pancreatic secretion whereas secretin infused stimulated bicarbonate secretion. These results indicate that intravenous but not intracerebroventricular administration of CRF inhibited gastric emptying of a saline solution in dogs. The inhibitory effect of intravenous CRF on gastric emptying is not mediated by the β-adrenergic nervous system, and not secondary to the release of other peptides that affect both pancreatic secretion and gastric emptying such as cholecystokinin and peptide YY.  相似文献   

14.
Wang LN  Li SL  Li CH  Zhang CX  Yuan H  Li XP 《生理学报》2012,64(2):187-192
The present study was to investigate the effects of diltiazem, a ghrelin receptor agonist, on food intake and gastrointestinal functions in rats. Rats were intragastrically administered with diltiazem solution (daily 16 mg/kg, 30 mg/kg or 80 mg/kg, 30 d), and the rats with saline as control. To detect the effects of diltiazem on food intake and body weight, the average daily food intake and body weight were recorded, and the serum metabolic hormones of plasma growth hormone (GH) and neuropeptide Y (NPY) were tested by radioimmunoassay. By means of the spectrophotometer and the modified Mett's method, the effects of diltiazem on rat's gastrointestinal function and pepsin activity were tested, respectively. In addition, the gastric juice's acidity of rats was detected by titration and the secretion amount was calculated. The results showed that the food intake and body weight were maximally promoted by diltiazem at the dose of 30 mg/kg daily (30 d). The average daily food intake and body weight were significantly increased, and the serum concentrations of GH and NPY were also remarkably increased in diltiazem-treated groups compared with those in control group. The results also showed that the gastric emptying rate, gastric acid secretion and the activity of pepsin were significantly increased in diltiazem-treated group compared with those in control group. These results suggest that diltiazem induces enhancement of eating, in the same time, it can also stimulate the gastrointestinal function and regulate growth of rat.  相似文献   

15.
We previously reported that MK-801 (dizocilpine), an antagonist of N-methyl-D-aspartate (NMDA)-type glutamate receptors, increased meal size and duration in rats. MK-801 did not increase sham feeding or attenuate reduction of sham feeding by intraintestinal nutrient infusions. These results suggested that the MK-801-induced increase in meal size did not depend on antagonism of postgastric satiety signals. Consequently, we hypothesized that the NMDA antagonist might increase food intake by directly antagonizing gastric mechanosensory signals or by accelerating gastric emptying, thereby reducing gastric mechanoreceptive feedback. To test this hypothesis, we recorded intake of 15% sucrose in rats implanted with pyloric cuffs that could be closed to prevent gastric emptying. Sucrose intake was increased when the pyloric cuffs were open, allowing the stomach to empty. However, intake was not increased when the pyloric cuffs were inflated, causing gastric retention of all ingested sucrose. Direct measurements of gastric emptying revealed that MK-801 accelerated the emptying of 5-ml loads of 0.9% NaCl and 15% sucrose. Furthermore, MK-801 also accelerated the rate of emptying of freely ingested sucrose regardless of the volume ingested. Taken together with our previous findings, these results indicate that blockade of NMDA receptors with MK-801 does not increase food intake by antagonizing gastric mechanosensation. Rather, it accelerates gastric emptying, and thereby may indirectly reduce gastric mechanoreceptive cues, resulting in prolongation of eating. Modulation of gastric emptying rate by NMDA receptors could play an important role in the control of meal sizes.  相似文献   

16.
Gastrointestinal hormones regulating appetite   总被引:6,自引:0,他引:6  
The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood-brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the central nervous system. In this way, hormonal signals from the gut may be translated into the subjective sensation of satiety. Moreover, the importance of the brain-gut axis in the control of food intake is reflected in the dual role exhibited by many gut peptides as both hormones and neurotransmitters. Peptides such as CCK and GLP-1 are expressed in neurons projecting both into and out of areas of the central nervous system critical to energy balance. The global increase in the incidence of obesity and the associated burden of morbidity has imparted greater urgency to understanding the processes of appetite control. Appetite regulation offers an integrated model of a brain-gut axis comprising both endocrine and neurological systems. As physiological mediators of satiety, gut hormones offer an attractive therapeutic target in the treatment of obesity.  相似文献   

17.
The secretion of glucocorticoid hormones is tightly regulated by the circadian clock and by negative humoral feedback loops, both acting on the hypothalamic-pituitary gland-adrenal axis. However, a new study Ishida et al., 2005 [this issue of Cell Metabolism) shows that light can influence the adrenal's glucocorticoid output by a more direct pathway.  相似文献   

18.
Rainbow trout consumed food in direct proportion to their body weight although the ration increased with temperature. Satiation time varied as 0.031 weight+0.868 temperature+29.145 min. Appetite after deprivation returned in close conjunction with gastric emptying, as judged from serial slaughter studies. Trout trained to operate demand feeders ate less but exhibited feeding rhythms even under conditions of constant illumination. Radiography showed that these rhythms closely paralleled gastric emptying. When offered food diluted with kaolin, the fish compensated by eating more food. This was achieved by increasing feeding frequency caused by a more rapid rate of gastric emptying.  相似文献   

19.
Ohinata K  Inui A  Asakawa A  Wada K  Wada E  Yoshikawa M 《Peptides》2001,22(4):589-595
We found that proadrenomedullin N-terminal 20 peptide (PAMP) decreased dose-dependently (3-30 nmol/mouse) food intake after intra-third cerebroventricular administration in fasted ddY mice. Gastric emptying also was delayed after central injection of PAMP. In our previous study, PAMP was demonstrated to elicit hyperglycemia via bombesin (BN) receptor. Then, we examined whether the effects of PAMP on feeding and gastric emptying were induced through BN receptor. Surprisingly, PAMP-induced reductions in feeding and gastric emptying rate were not blocked by a BN antagonist, [D-Phe(6), Leu-NHEt(13), des-Met(14)]-BN (6-14). PAMP suppressed feeding in mice lacking gastrin-releasing peptide receptor or BN receptor subtype-3. These results indicate that centrally administered PAMP inhibits food intake, involving the delayed gastric emptying, not through BN receptors but through selective PAMP receptor.  相似文献   

20.
Ghrelin is a gut peptide that is secreted from the stomach and stimulates food intake. There are ghrelin receptors throughout the gut and intracerebroventricular ghrelin has been shown to increase gastric acid secretion. The aim of the present study was to examine the effects of peripherally administered ghrelin on gastric emptying of a non-nutrient and nutrient liquid, as well as, basal and pentagastrin-stimulated gastric acid secretion in awake rats. In addition, gastric contractility was studied in vitro. Rats equipped with a gastric fistula were subjected to an intravenous infusion of ghrelin (10-500 pmol kg(-1) min(-1)) during saline or pentagastrin (90 pmol kg(-1) min(-1)) infusion. After administration of polyethylene glycol (PEG) 4000 with 51Cr as radioactive marker, or a liquid nutrient with (51)Cr, gastric retention was measured after a 20-min infusion of ghrelin (500 pmol kg(-1) min(-1)). In vitro isometric contractions of segments of rat gastric fundus were studied (10(-9) to 10(-6) M). Ghrelin had no effect on basal acid secretion, but at 500 pmol kg(-1) min(-1) ghrelin significantly decreased pentagastrin-stimulated acid secretion. Ghrelin had no effect on gastric emptying of the nutrient liquid, but significantly increased gastric emptying of the non-nutrient liquid. Ghrelin contracted fundus muscle strips dose-dependently (pD2 of 6.93+/-0.7). Ghrelin IV decreased plasma orexin A concentrations and increased plasma somatostatin concentrations. Plasma gastrin concentrations were unchanged during ghrelin infusion. Thus, ghrelin seems to not only effect food intake but also gastric motor and secretory function indicating a multifunctional role for ghrelin in energy homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号