首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency.

Results

Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-??) was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression.

Conclusion

Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar pattern to the unsubstituted parent gemini surfactant. Glycyl-lysine substitution in the gemini spacer improved buffering capacity and imparted a pH-dependent increase of particle size. This property conferred to the P/12-7NGK-12/L nanoparticles the ability to escape efficiently from clathrin-mediated endosomes. Balanced binding properties (protection and release) of the 12-7NGK-12 in the presence of polyanions could contribute to the facile release of the nanoparticles internalized via caveolae-mediated uptake. A more efficient endosomal escape of the P/12-7NGK-12/L nanoparticles lead to higher gene expression compared to the parent gemini surfactant.  相似文献   

2.
The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).  相似文献   

3.
BACKGROUND: Localized scleroderma (morphea and linear scleroderma) is a connective tissue disease, accompanied by excessive proliferation and deposition of collagen within the skin, inflammation, vasculopathy and a deranged immune system. Interferon gamma (IFNgamma), an inhibitor of collagen synthesis and an immunomodulator, could be a potential therapeutic agent if it could be delivered into or expressed locally in affected skin in a non-invasive manner. In this study, the feasibility of topical delivery of the IFNgamma gene and expression of IFNgamma were investigated in mice. METHODS: Novel dicationic (gemini) surfactant (spacer length n=2-16; alkyl chain m=12 or 16)-DNA complexes were formulated and characterized by circular dichroism and atomic force microscopy to select gemini analogues with the highest transfection efficiency (TE). Transfection and cellular expression of IFNgamma from the bicistronic pGTmCMV.IFN-GFP plasmid were evaluated in PAM 212 keratinocyte culture by ELISA and fluorescence microscopy. Topical delivery of plasmid using liposomal and nanoemulsion systems, based on gemini surfactant 16-3-16, was evaluated in mice by IFNgamma expression analysis. RESULTS: In vitro TE was found to be dependent on the spacer length of the gemini surfactant, with the C3 spacer showing the highest activity (both 12-3-12 and 16-3-16). Both gemini cationic liposomes and gemini nanoemulsion (3x25 microg DNA/animal) produced significantly higher levels of IFNgamma in the skin (359.4 and 607.24 pg/cm2) compared to naked DNA (135.69 pg/cm2) or a liposomal Dc-chol formulation (82.15 pg/cm2). IFNgamma expression in the lymph nodes was higher in the animals treated with gemini liposomes (422.74 pg/animal) compared to the nanoemulsion formulation (131.27 pg/animal) or the Dc-chol formulation (82pg/animal). CONCLUSIONS: The feasibility of topical delivery of pGTmCMV.IFN-GFP plasmid in mice using gemini cationic surfactant based delivery systems was demonstrated. IFNgamma expression after treatment with gemini-DNA formulations in the skin was 3-5-fold higher compared to the treatment with naked DNA (p<0.05), and 4-6-fold higher than the Dc-chol-DNA complex, indicating a significant advance in topical DNA delivery across intact skin in vivo.  相似文献   

4.
The present study aims at a better understanding of the mechanism of transfection mediated by two sugar-based gemini surfactants GS1 and GS2. Previously, these gemini surfactants have been shown to be efficient gene vectors for transfection both in vitro and in vivo. Here, using Nile Red, a solvatochromic fluorescent probe, we investigated the phase behavior of these gemini surfactants in complexes with plasmid DNA, so-called lipoplexes. We found that these lipoplexes undergo a lamellar-to-non-inverted micellar phase transition upon decreasing the pH from neutral to mildly acidic. This normal (non-inverted) phase at acidic pH is confirmed by the colloidal stability of the lipoplexes as shown by turbidity measurements. We therefore propose a normal hexagonal phase, H(I), for the gemini surfactant lipoplexes at acidic endosomal pH. Thus, we suggest that besides an inverted hexagonal (H(II)) phase as reported for several transfection-potent cationic lipid systems, another type of non-inverted non-bilayer structure, different from H(II), may destabilize the endosomal membrane, necessary for cytosolic DNA delivery and ultimately, cellular transfection.  相似文献   

5.
The present study aims at a better understanding of the mechanism of transfection mediated by two sugar-based gemini surfactants GS1 and GS2. Previously, these gemini surfactants have been shown to be efficient gene vectors for transfection both in vitro and in vivo. Here, using Nile Red, a solvatochromic fluorescent probe, we investigated the phase behavior of these gemini surfactants in complexes with plasmid DNA, so-called lipoplexes. We found that these lipoplexes undergo a lamellar-to-non-inverted micellar phase transition upon decreasing the pH from neutral to mildly acidic. This normal (non-inverted) phase at acidic pH is confirmed by the colloidal stability of the lipoplexes as shown by turbidity measurements. We therefore propose a normal hexagonal phase, HI, for the gemini surfactant lipoplexes at acidic endosomal pH. Thus, we suggest that besides an inverted hexagonal (HII) phase as reported for several transfection-potent cationic lipid systems, another type of non-inverted non-bilayer structure, different from HII, may destabilize the endosomal membrane, necessary for cytosolic DNA delivery and ultimately, cellular transfection.  相似文献   

6.
The thermal stability and enzymatic activity of bovine pancreatic ribonuclease A (RNase A) have been investigated in the presence of a homologous series of cationic gemini surfactants (alkanediyl-α,ω-bis(hydroxyethyl methyl hexadecyl ammonium bromide)). UV, circular dichorism and fluorescence spectroscopies have been used for this study. The denaturation curves at various surfactant concentrations were analyzed on basis of a two-transition model to obtain values of T(m) (temperature at the midpoint of denaturation) and ΔH(m) (enthalpy change at T(m)) of each transition. The main conclusion of this study is that these cationic gemini surfactants slightly activate and stabilize RNase A below their critical micelle concentrations at pH 5.0. The cationic gemini surfactant with the shorter spacer interacts more efficiently with RNase A than those with longer spacers.  相似文献   

7.
A structure-activity relationship has been explored on the gene transfection efficiencies of cardiolipin mimicking gemini lipid analogues upon variation of length and hydrophilicity of the spacer between the cationic ammonium headgroups and lipid hydrocarbon chain lengths. All the gemini lipids were found to be highly superior in gene transfer abilities as compared to their monomeric lipid and a related commercially available formulation. Pseudoglyceryl gemini lipids bearing an oxyethylene (-CH2-(CH2-O-CH2)m-CH2-) spacer were found to be superior gene transfecting agents as compared to those bearing polymethylene (-CH2)m-) spacers. The major characteristic feature of the present set of gemini lipids is their serum compatibility, which is most often the major hurdle in liposome-mediated gene delivery.  相似文献   

8.
Design, syntheses, and gene delivery efficacies of fifteen novel gemini (dimeric) and three monomeric cationic lipids anchored on an aromatic backbone have been described. Each new lipid has been used for liposome formation, and optimal formulations were used to determine the structure-activity correlation of the gene transfection efficacies of these lipids in HeLa and HT1080 cells. The results of the present investigation bring out the effect of hydrocarbon chain lengths and the length of the spacer between the headgroups on gene transfection efficiencies of the cationic gemini lipids based on aromatic backbone. The lipids bearing n-C 14H 29 hydrocarbon chain lengths have been found to be the best transfecting agents compared to their counterparts with n-C 16H 33 and n-C 12H 25 chains in HeLa cells. On the other hand, in HT1080 cells, the lipids based on n-C 12H 25 and n-C 14H 29 chains were found to be more potent transfecting agents than lipids possessing n-C 16H 33 chains. Transmission electron microscopy examination revealed the existence of spherical lipid-DNA complexes.  相似文献   

9.
Amongst a number of potential nonviral vectors, cationic liposomes have been actively researched, with both gemini surfactants and bola amphiphiles reported as being in possession of good structures in terms of cell viability and in vitro transfection. In this study, a cholesterol-based diquaternary ammonium gemini surfactant (Chol-GS) was synthesized and assessed as a novel nonviral gene vector. Chol-GS was synthesized from cholesterol by way of four reaction steps. The optimal efficiency was found to be at a weight ratio of 1:4 of lipid:DOPE (1,2-dioleoyl-L-alpha- glycero-3-phosphatidylethanolamine), and at a ratio of between 10:1~15:1 of liposome:DNA. The transfection efficiency was compared with commercial liposomes and with Lipofectamine, 1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE-C), and N-[1-(2,3-dioleoyloxy)propyl]- N,N,N-trimethylammonium chloride (DOTAP). The results indicate that the efficiency of Chol-GS is greater than that of all the tested commercial liposomes in COS7 and Huh7 cells, and higher than DOTAP and Lipofectamine in A549 cells. Confirmation of these findings was observed through the use of green fluorescent protein expression. Chol-GS exhibited a moderate level of cytotoxicity, at optimum concentrations for efficient transfection, indicating cell viability. Hence, the newly synthesized Chol-GS liposome has the potential of being an excellent nonviral vector for gene delivery.  相似文献   

10.
Three novel polycationic gemini amphiphiles with different spacers were developed and evaluated in terms of their physiochemical properties and transfection efficiencies. Cationic liposomes formed by these amphiphiles and the helper lipid DOPE were able to successfully condense DNA, as shown by gel mobility shift and ethidium bromide intercalation assays. Transfection activity of the liposomes was superior to Lipofectamine® 2000 and was dependent on spacer structure, hydrophobicity, and nucleic acid type (pDNA or siRNA). We demonstrated that the cationic liposomes 2X6/DOPE and 2X7/DOPE are potential non-toxic vehicles for gene delivery.  相似文献   

11.
Dicationic alkylammonium bromide gemini surfactants represent a class of amphiphiles potentially effective as skin permeation enhancers. However, only a limited number of studies has been dedicated to the evaluation of the respective cytotoxicity, and none directed to skin irritation endpoints. Supported on a cell viability study, the cytotoxicity of gemini surfactants of variable tail and spacer length was assessed. For this purpose, keratinocyte cells from human skin (NCTC 2544 cell line), frequently used as a model for skin irritation, were employed. The impact of the different gemini surfactants on the permeability and morphology of model vesicles was additionally investigated by measuring the leakage of calcein fluorescent dye and analyzing the NMR spectra of 31P, respectively. Detail on the interaction of gemini molecules with model membranes was also provided by a systematic differential scanning calorimetry (DSC) and molecular dynamics (MD) simulation. An irreversible impact on the viability of the NCTC 2544 cell line was observed for gemini concentrations higher than 25 mM, while no cytotoxicity was found for any of the surfactants in a concentration range up to 10 mM. A higher cytotoxicity was also found for gemini surfactants presenting longer spacer and shorter tails. The same trend was obtained in the calorimetric and permeability studies, with the gemini of longest spacer promoting the highest degree of membrane destabilization. Additional structural and dynamical characterization of the various systems, obtained by 31P NMR and MD, provide some insight on the relationship between the architecture of gemini surfactants and the respective perturbation mechanism.  相似文献   

12.
The impact of the length of gemini surfactant spacer on complexation and condensation of calf thymus DNA by cationic mixed phospholipid/gemini liposomes was investigated by monitoring the conformational changes of DNA by circular dichroism and the lipid hydration level by the emission characteristics of the fluorescent probe laurdan included in the lipid bilayer. The length of the spacer was shown to influence, on one hand, the hydration level and the organization of the corresponding liposomes and, on the other, the variation of lipid hydration level and the DNA conformation upon complexation. In fact, in correspondence with the longest spacer we observed more hydrated liposomes, probably organized in domains, a higher extent of dehydration promoted by the addition of DNA, and a minor extent of DNA conformational change. The physicochemical features of lipoplexes were shown to depend on the [cationic headgroup]/[DNA single base] ratio.  相似文献   

13.
Gemini surfactants are a new class of surfactants that consist of two hydrophilic head groups and two hydrophobic tails separated by a spacer group. As the properties of geminis are different to their monomeric counterparts, a large number of applications have been investigated. Here we report on the use of a new class of gemini detergents containing a disulfide bond in the spacer (Det-SS-Det) for protein refolding. Using lysozyme as a model protein we could demonstrate that the disulfide gemini detergents allow oxidative refolding of the protein in the absence of any external redox system in an “artificial chaperone system”. Refolding kinetics using gemini disulfide detergents differing in their hydrophobicity were analysed to determine the folding and aggregation rate constants. The results point to an important role of the transiently formed mixed disulfides between the protein and the detergent (Prot-SS-Det) in the oxidative refolding process of lysozyme.  相似文献   

14.
Pi Y  Shang Y  Peng C  Liu H  Hu Y  Jiang J 《Biopolymers》2006,83(3):243-249
Interactions between bovine serum albumin (BSA) and cationic gemini surfactant alkanediyl-alpha,omega-bis(dimethyldodecyl-ammonium bromide) (12-n-12, n=3, 4, 6) in aqueous solution have been investigated by measuring fluorescence, UV-vis transmittance, dynamic lighting scattering, and circular dichroism. Compared to a traditional surfactant dodecyltrimethylammonium bromide (DTAB), 12-n-12 interacts with BSA more strongly. With increasing concentration, 12-n-12 first binds specifically onto BSA leading to the unfolding and aggregation of BSA, and the decrease in alpha-helix content; and then forms micelle-like complexes along the unfolded BSA chains. A gemini surfactant with a longer spacer has a larger effect on BSA unfolding due to a stronger hydrophobic interaction.  相似文献   

15.
Four novel cholesterol-based gemini cationic lipids differing in the length of oxyethylene-type spacers [-CH2-(CH2-O-CH2)n-CH2-] between each ammonium headgroup have been synthesized. These formed stable suspensions in aqueous media. Cationic liposomes were prepared from each of these lipids individually and as mixtures of cationic lipid and DOPE. These were used as nonviral gene delivery agents. All the cholesterol-based gemini lipids induced better transfection activity than their monomeric counterpart. Inclusion of DOPE in co-liposomal formulation of the cationic gemini lipid potentiates their gene transfer activity significantly. A major characteristic feature of these oxyethylene spacer based cholesterol gemini lipids was that serum does not inhibit the transfection activity of these gemini lipids, whereas the transfection activity of their monomeric counterpart decreased drastically in the presence of serum. One of the cholesterol-based gemini lipids 2a possessing a -CH2-CH2-O-CH2-CH2- spacer showed the highest transfection activity.  相似文献   

16.
Novel reduced sugar gemini amphiphiles linked through their tertiary amino head groups via alkyl spacers of 4 or 6 carbons, and with varying (unsaturated) alkyl tail lengths of 12--18, have been synthesized and tested for transfection in vitro in an adherent Chinese hamster ovary cell line (CHO-K1). Transfection efficiencies peaked at 2.7 times that of the commercial standard Lipofectamine Plus/2000 for pure solutions of the compound bearing unsaturated (oleyl) alkyl tails. For those compounds bearing saturated alkyl tails, transfection efficiency peaked at a tail length of 16, at a level similar to Lipofectamine Plus/2000. All of the amphiphiles formed bilayer vesicles at physiological pH. Some of the amino groups at the surface were protonated, and vesicles therefore bore a positive charge. Increased protonation with reduced pH resulted in greatly increased monomer solubility and a morphology change from vesicle to micelle at characteristic pH values, dependent on the tail length. For the compounds promoting high transfection efficiency, this characteristic pH was within the range found in the endosomal compartment (7.4--4.0). Formation of mixed micelles between gemini surfactant and membrane phospholipids at reduced pH may therefore provide a method of endosome rupture and subsequent escape of entrapped DNA, thus discarding the need for extra fusogenic or endosomolytic agents. The positive charge on the vesicles at physiological pH drives the colloidal association with DNA. Small angle X-ray scattering measurements indicate that lamellar aggregates are formed, which have a d spacing of 48--54 A. Preliminary differential scanning calorimetric measurements suggest that reduction of pH causes a disordering of the hydrocarbon region of the DNA-surfactant complex.  相似文献   

17.

Background

Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media.

Methodology/Principal Findings

To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features.

Conclusions/Significance

-OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.  相似文献   

18.
The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with X(SR-1) > or = 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with X(SR-1) > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when X(SR-1) > 0.50. Condensation of DNA in turn seems to be required for efficient transfection.  相似文献   

19.
A kind of biocompatible derivative of chitosan, N-carboxyethylchitosan (CECh) with a degree of substitution of 0.21 (DS 0.21) was synthesized by a Michael addition reaction. The aggregation behavior of CECh in aqueous solution under the effects of pH, polymer concentration, as well as a gemini surfactant, was investigated by turbidity, zeta potential, fluorescence spectroscopy, viscosity, and surface tension measurements. In the pH range of 3-11, the macroscopic phase separation of CECh from water occurs near the isoelectric point (IEP) due to the intense electrostatic attraction, and the intermolecular interaction at pH 4 is stronger than that at pH 10 over the whole CECh concentration region. The critical aggregation concentration (CAC) of CECh/12-n-12 (n = 3, 6) in basic media is determined to be between 0.0010 and 0.0015 mmol/L, and the length of the surfactant spacer is found to play an important role in the interaction of 12-n-12 with CECh.  相似文献   

20.
We describe the formulation of bovine serum albumin nanoparticles (BSA‐NPs) by the coacervation method using surfactants. Plasmids (pUC18, pUC18egfp and pBBR1MCS‐2) isolated from E. coli were incorporated into the BSA matrix by incubating in albumin solution prior to formulation of NPs. Plasmid incorporation was calculated by % yield, entrapment efficiency, DNA loading capacity and release of entrapped DNA by comparing with blank NPs. BSA‐DNA binding studies were carried out by using fluorescence spectroscopy and Fourier Transform Infra Red Spectroscopy (FT‐IR). The surface charge distribution of the NPs loaded with plasmid was calculated using zeta potential. The photoluminescence of BSA‐NPs was quenched when loaded with pDNA, confirming the interaction of DNA with BSA. Altogether, these results provide evidences for the excellent DNA carrying efficiency of BSA‐NPs without loss of plasmid's integrity. The NPs were used to transfect E. coli DH5α strain lacking ampicillin resistance. They, however, showed ampicillin resistance subsequent to transfection with plasmid encoding ampicillin resistance gene. Effect of transfection was confirmed by confocal microscopy and by the isolation of the plasmid by agarose gel electrophoresis from the transfected bacterial culture. This study clearly demonstrates the efficacy of BSA‐NPs as delivery vehicle for pDNA transfection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号