首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.在1×10~(-3)秒強閃光下,Vit K,FMN及Fe(CN)_6~≡偶联的光合磷酸化的每閃产量达到最高所需的暗时間相等,在10—20度时为0.05—0.07秒。这与光合作用及希尔反应的暗反应速度相似。而循环光合磷酸化所需的暗时間却要短1—2倍。2.Vit K所导致的光合磷酸化的最高每閃产量高于PMS系統,且都受温度及閃时长短的影响。3.Vit K系統的最高每閃产量被3×10~(-5)二氮杂菲抑制了85%,而PMS系統則仅抑制40%。两系統的暗反应都受到程度相近的抑制。4.文章討論了PMS及Vit K系統途径的差异与暗反应速度之間的关系。  相似文献   

2.
我們同时測定了小麦离体叶綠体的Mehler反应与光合磷酸化作用,結果指出: 1.光合磷酸化輔助因素Vit.K及FMN促进Mehler反应,PMS无影响。2.离体叶綠体不加輔助因素或加入Vit.K或FMN的情况下,ATP与CH_3CHO的形成量有一定的数量关系。由此算出的P/O值約为同时測定的K_3Fe(CN)_6系統的P/O值的二倍。在偶联得完全的制剂中,P/O值达2。3.无論对电子传递还是磷酸化作用,pH、解联剂(NH_4~ )及叶綠体保存时間对Vit.K及K_3Fe(CN)_6系統的影响均有一致的趋势。4.在有氧条件下,P/O值与輔助因素的浓度无关。本文結果指出了Mehler反应与FMN或Vit.K导致的光合磷酸化实际上发生在同一个过程中,这样就进一步肯定了Vit.K与FMN导致的光合磷酸化都是属于非循环方式。对它們在生理上的可能作用也作了簡短的討論。  相似文献   

3.
在暗間隔0.16秒的3.3×10~(-4)秒閃光下,比較了PMS,Vit.K,FMN及Fe(CN)_6~≡光合磷酸化反应系統的每閃最高产量以及温度的影响,并观察邻二氮杂菲对这些反应系統每閃最高产量抑制的差异,以及在閃时延长时,它对閃光产量抑制程度的变化,得到結果如下: (1)在短閃光下,PMS,Vit.K,FMN及Fe(CN)_6~≡光合磷酸化反应系統的每閃最高产量都极接近,温度的影响也不太显著。(2)邻二氮杂菲对Vit.K,FMN及Fe(CN)_6~≡非循环光合磷酸化反应系統的每閃最高产量的50%抑制濃度都在0.96×10~(-5)M/左近,而对PMS系統的每閃最高产量的50%抑制濃度則力4.5×10~(-5)M。(3)邻二氮杂菲对PMS及Vit.K这两种类型的光合磷酸化反应系統在連續弱光下反应速度的50%抑制濃度与对这两反应系統的每閃最高产量的50%抑制濃度相同,即分别为4.5×10~(-5)M及0.95×10~(-5)M;同样温度(5℃)而光强增加到100000米烛光,则对这两反应系统反应速度的50%抑制浓度提高到依次为14.0×10~(-5)M及2.3×10~(-5)M。如果再把温度从5℃提升到30℃,则50%抑制浓度更提高到25.0×10~(-5)M及4.0×10~(-5)M。(4) 邻二氮杂菲对Vit.K系统的短闪光的每闪最高产量的抑制程度不受闪光光强影响,然而当闪光的闪时增加时,抑制剂对闪光产量的抑制程度则随闪时增加而减少。由此推论,邻二氮杂菲的抑制部位与光合磷酸化反应的光化作用中心有关,增加闪光闪时,或在连续光下增加光强,或在饱和光下提高温度都使光化作用中心增加重复利用而使抑制剂的抑制作用减弱。循环(PMS)及非循环(Vit.K,FMN,Fe(CN)_6~≡)光合磷酸化反应系统的闪光产量相同,而对邻二氮杂菲的敏感程度却相差很大的现象,可以用放氧及磷酸化各有一光化作用中心解释之。非循环光合磷酸化反应系统包括有放氧及磷酸化两个,而循环光合磷酸化反应系统则仅需磷酸化一个光化作用中心。  相似文献   

4.
在反应介质pH 7.2条件下,观察到6-BA处理叶绿体后,能促进循环(+PMS)和非循环(+FeCy或MV)的光合磷酸化反应,提高叶绿体的偶联程度,增加P/e_2比值。此促进现象与叶片的生理状态密切有关。在对光合磷酸化有促进作用的情况下,6-BA可改善类囊体的能化状态,增加高能态的积累。对光激活的叶绿体膜上Mg~(2+)-ATP酶和偶联因子热活化的ATP酶活力均表现出促进作用。6-BA的作用部位可能与膜上的偶联因子有关。  相似文献   

5.
用菠菜叶绿体悬浮液,在红光下(620—660mμ,6—8×10~3尔格/厘米~2-秒)测定同位素P~(32)标记的无机磷酸进入ATP的强度,并根据吸收的光能量换算为形成一个分子ATP所需要的红光量子数。结果指出: (1)循环光合磷酸化作用,不论用何种辅助因素(PMS,维生素K_3,FMN),形成一个分子ATP的量子需要量均在4—5之间(最低一次获得2.9)。叶提取液代替辅助因素,结果亦同。(2)与希尔反应偶联的光合磷酸化作用(希尔氧化剂为K_3Fe(CN)_6或TPN)的量子需要量亦是4—6。同时测定的还原作用指出希尔反应中每放出一个分子O_2,需要8—12个红光量子,表示在试验条件下,二者是完全偶联的(P/2e?1)。没有磷酸化(不加ADP及P_i)时,希尔反应的量子需要量不变,表示偶联的ATP形成不需额外的光量子。(3)光强度减低,则循环与非循环光合磷酸化作用的效率随之降低,量子需要量增加,而希尔反应的效率则不变。从上述结果推论,两种光合磷酸化作用均是通过同一的电子传递系统,在此系统中仅有一个磷酸化部位,除非另有一个部位是极易破坏的。试验结果也对光合作用的量子需要量问题,供给可能的解释。在弱光下光合作用效率高,可能是由于部份ATP来自呼吸;而在强光下效率减低,则是呼吸所供给的ATP不足而必需依靠循环光合磷酸化所致。  相似文献   

6.
用金霉素溶液处理菠菜离体叶绿体,对循环( PMS)和非循环光合磷酸化( FeCy、MV或BQ DBMIB)均可表现出促进作用,表明它对两个能量保存部位都有促进作用。它能提高磷酸化的偶联程度,增加ADP/O及PC比值。在对光合磷酸化有促进作用的情况下,用两阶段光合磷酸化法测定,它对高能态的积累略有增加或影响不大,但它能显著增加叶绿体的延迟发光。它对叶绿体膜上Mg~(2 )-ATP_(ase)及偶联因子Ca~(2 )-ATP_(ase)活力有抑制。金霉素溶液的荧光强度可被加入偶联因子所提高,这些都表明金霉素至少有一个作用部位与偶联因子有关。文中对它能促进光合磷酸化作用的机理进行了讨论。  相似文献   

7.
细胞色素C_3不仅能增进除去铁氧还蛋白载色体的循环光合磷酸化活性的恢复,而且也增进以DCPIPH_2为电子供体,维生素K_3、反丁烯二酸分别为电子受体构成的非循环光合磷酸化活性的恢复。 氩气相下,细胞色素C_3促进正常载色体光合磷酸化活性的最适浓度是1.8 μmol,当PMS存在时,这一促进作用随C_3浓度的增加而直线上升,然后呈稳态。 Antimycin A(10~(-7)mol/L)能充分抑制C_3参与的光合磷酸化活性,这一抑制现象在PMS存在时消失。 o~-phenanthroline(1×10~(-5)mol/L.)对C_3参与的光合磷酸化活性亦具抑制作用,并被PMS的添加而消失,当浓度提高时(10~(-3)mol/L),抑制现象不因PMS的存在而消失。 氢气相下的载色体光合磷酸化活性比氩气相下的低,并且随着载色体贮存(-20℃)时间的增长而急剧下降,24h贮存,丧失活性达60%。C_3对氢气相下的光合磷酸化活性具明显的促进作用,而铁氧还蛋白则不能,但两者同时存在时,其磷酸化活性显著提高。  相似文献   

8.
光合细菌Rhodopseudomonas capsulata载色体的内源光合磷酸化(循环光合磷酸化)对antimycin A敏感,在浓度为10~(-7)M时,几乎完全被抑制。外加电子供体(DCPIPH_2)和电子受体(维生素K_3,反丁烯二酸或氧)所构成的非循环光合磷酸化,对antimycin A不敏感,这些结果与Rhodospirillum rubrum载色体中所得到的结果一致。 经0.2%Triton X-100处理后的载色体,两种类型(循环和非循环)的光合磷酸化活性完全丧失。回加铁氧还蛋白,只能使非循环光合磷酸化恢复。循环光合磷酸化活性的恢复必需同时有PMS的存在,所恢复了的磷酸化活性,对antimycin A不再敏感。 ο-Phenanthroline对细菌载色体的光合磷酸化活性具有两个反应部位。高浓度(10~(-3)M)时,几乎完全抑制循环和非循环的光合磷酸化作用(包括回加铁氧还蛋白后恢复了的光合磷酸化作用)。低浓度(10~(-5)M)时,对存在PMS的循环光合磷酸化和非循环光合磷酸化只具有部分抑制作用。而对回加铁氧还蛋白后恢复了的循环和非循环光合磷酸化活性则表现出同等程度的抑制作用。 基于上述结果,对铁氧还蛋白在光合电子传递链上作为次级电子受体的可能性进行了讨论。  相似文献   

9.
我们利用光强效应较不显著的甘薯叶细胞制剂为材料,测定了循环(内源、PMS)及非循环光合磷酸化[K_3Fe(CN)_6,NADP~+]在橙—红光区段的作用光谱及双光增益效应,所得的主要结果如下: (1)在620—680mμ范围内,各系统作用光谱的起伏均很小,没有出现显著的高峰或低谷。(2)当波长超过680mμ时,非循环光合磷酸化系统的效率大降,出现与光合作用及希尔反应中相似的“红降”现象。以640mμ光与708mμ光同时照射,见到双光增益效应的存在。(3)循环光合磷酸化在700mμ光照下,相对效率与短波长光下相近或稍高。波长再向上移则效率也迅速降低。在有氧条件下,708mμ光下的效率也受同时加照的640mμ光的增益,但在无氧条件下则不显示增益效应。作者认为由于部分循环光合磷酸化辅助因子的自动氧化,远红光下放氧反应受阻,影响了光氧化物的还原及重复使用,因而使相对效率降低。本文结果从光合磷酸化的角度,支持叶绿体中存在着两个独立的、有不同色素参与的光化学反应。  相似文献   

10.
用1~2 mmol/L NaHSO3喷施于水稻(Oryza sativa L.)叶面可以提高叶片的光合速率,并能持续3 d以上.在此条件下,光下叶片中的ATP含量明显增高,叶片的叶绿素毫秒延迟荧光加强,反映与光合磷酸化活力有关的跨类囊体膜质子梯度增加.乳熟期喷施2次1 mmol/L NaHSO3后,水稻产量提高约10%.研究表明NaHSO3的主要作用和PMS(phenazine methosulfate)促进光合速率的原因可能类似,都是增加了ATP的供应.与此同时,观察到低浓度NaHSO3可促进水稻中反映循环电子传递的叶绿素荧光在作用光关闭后的短时上升.以上现象表明低浓度NaHSO3的促进作用很可能是通过促进围绕PSⅠ的循环电子传递及其耦联的光合磷酸化而促进水稻光合作用的.  相似文献   

11.
(1)在不同光强度下研究叶綠体的光合磷酸化作用和希尔反应,发现当光弱到一定程度后,光合磷酸化的效率,不论是“循环”或是“偶联”的都显著降低,而同时测定的希尔反应的效率则不变。因此,这个“光强效应”为光合磷酸化所特有,显然不是发生在“电子传递系统”或氧化还原部分。(2)在作用液中加入非放射性的ATP或预先照光形成一些AT~32P,再进行实验,这个“光强效应”仍同样出现,证明这个效应不是由于最终产物(ATP)的分解,亦不是由于应用放射性~(32)P测定方法所造成的假象。(3)这个“光强效应”在光强增加到一定程度以上时,即逐渐消失;在较低的温度下则减轻;在闪光条件下则比在连续光下更加显著。这些结果指出,“光强效应”是由于中间产物的破坏或转向其他代谢途径。此作用是一个暗反应,可能是酶促的。酶量少,容易达到饱和,弱光下中间产物少,被它作用的比重就大,强光下中间产物多,被它作用的比重就小,所以“光强效应”只在弱光下显著。(4) 叶綠体加Mg~( )及PMS照以饱和强光,然后立即(<0.1秒)在暗中加入Pi及ADP,仍有很多ATP形成,但如在暗中过5秒钟后再加Pi及ADP,则几乎完全没有ATP形成。这指出叶綠体照光后产生能与Pi结合的中间产物(Z~*),其饱和量约为20—40mμmole/μmole叶綠素。它在室温(20—25度)迅速破坏或转向其他代谢途径,5秒后已不存在,在低温(5度)则可维持数秒。(5) 同样制剂加Pi再照光,然后暗5秒再加ADP,则ATP的产量,比立即加ADP者只减少一半。指出上述的中间产物(Z~*)与Pi结合后形成第二个中间产物(Z~P)在叶綠体内比较稳定。“光强效应”可能主要是Z~*或以前的中间产物被破坏或转向其他用途所引起。  相似文献   

12.
2015—2016年在西北黄土高原半干旱区进行大田定位试验,以‘陇春35号’为试验材料,设全膜覆土穴播(PMS)、全砂覆盖穴播(SM)和露地穴播(CK)3个处理,分析旗叶光合特性、春小麦耗水特性和产量构成因子之间的关系.结果表明: PMS和SM 在0~300 cm土层的土壤贮水量在灌浆前分别较CK提高47.8和31.6 mm,灌浆期均较CK降低15.6 mm.PMS和SM提高春小麦挑旗-抽穗期和扬花-灌浆期的土壤耗水.PMS和SM的叶面积指数分别较CK提高59.0%~73.7%和40.1%~52.7%,叶片SPAD值分别较CK提高3.5%~28.4%和2.9%~23.9%.PMS的光合速率和气孔导度在春小麦挑旗、抽穗、扬花期分别较CK提高23.5%、33.0%、17.7%和32.6%、76.4%、66.9%,灌浆期分别较CK降低26.2%和16.4%;PMS和SM的气孔限制值在抽穗、扬花、灌浆期分别较CK降低14.6%、23.9%、22.3%和25.7%、29.8%、17.4%.叶片瞬时水分利用效率PMS在挑旗期较CK提高57.8%,扬花期降低11.2%.PMS的表观量子效率在抽穗、扬花期分别较SM和CK增加22.6%、18.7%和26.8%、14.3%.PMS和SM春小麦的株高和产量构成因子均显著高于CK,且在干旱年份增幅较大;PMS的产量较CK和SM分别提高36.2%和8.7%,水分利用效率分别提高9.4%和3.4%.因此,PMS和SM提高了小麦灌浆前土壤贮水,加剧了挑旗到抽穗和扬花到灌浆期的耗水,提高了小麦叶片SPAD值和叶面积指数,增强了小麦灌浆前旗叶光合功能,促进 “库”的建成和同化物的转运,实现增产和水分高效利用.PMS在丰水年份的增产潜力和干旱年份的适应能力比SM更强.  相似文献   

13.
循环光合磷酸化   总被引:3,自引:0,他引:3  
文章在回顾循环光合磷酸化和循环电子传递链发现的基础上,分析了循环光合磷酸化在光合作用中的地位,并对影响循环光合磷酸化的内外因素及其调控作了述评,为进一步开展相关研究提供参考.  相似文献   

14.
光合作用被称为"地球上最重要的化学反应",其二氧化碳同化是由还原辅酶II(NADPH)和腺三磷(ATP)来推动的。ATP主要来源于非循环光合磷酸化和循环光合磷酸化,但以往研究集中在前者。21世纪以来,随着测定技术的发展和多条与循环光合磷酸化有关的电子传递途径的发现,循环光合磷酸化的重要性和功能引起了极大地关注。该文作者结合自己实验室的相关的研究,围绕循环光合磷酸化的发现和重要性、同化力两个组分的比例与促进光合磷酸化提高光合作用的途径进行探讨,为进一步深入研究提供参考。  相似文献   

15.
外加低浓度循环光合磷酸化电子递体硫酸甲酯吩嗪(PMS)对菠菜、大豆、水稻和小麦叶片光合放氧有促进作用,与此同时叶片ATP含量也得到增加。PMS对经8 mmol L~(-1)NH_4Cl处理过的菠菜叶片的光合放氧也有促进,最适促进浓度比未经NH_4Gl处理的叶片高,促进的幅度也大。幼龄叶与成长叶相比,幼龄叶的光合磷酸化活性和P/O比值低于成长叶片,其光合放氧速率受PMS促进的幅度大于成长叶片。因此光合磷酸化也可以成为光合作用的一个重要限制因素。  相似文献   

16.
我们进一步研究了叶绿体照光时形成的高能态与光合磷酸化的关系。结果如下:恒态下,苯二胺等弱有机碱可大大促进高能态(Z~*)的积聚。但是在起始时间内与对照相比,Z~*的形成却被显著抑制,而对光合磷酸化(PSP)活力影响很小。这说明这时推动ATP形成的动力可由⊿H~+以外形式的高能态来提供。当叶绿体照光时,分别用可去除类囊体膜内外AH~+的解联剂NH_4Cl或可消除电位差(⊿E)的载离子体短杆菌环肽(G·D)处理,或者共同作用,Z~*的形成几平全被抑制,而PSP活力仍有少量残留。说明有AH~+、⊿E以外形式的高能态的存在,以推动ATP形成。叶绿体在预照光时加入无载体~(32)P_i,形成了Z~~(32)p。实验表明这Z~~(32)P可能是类囊体内源ATPb在光下磷酸化或ATPb与~(32)Pi交换的产物~(32)P~ATP。Z~~(32)P的形成不受NH_4Cl或G.D的抑制,即在去除AH~+或⊿E之后,~(32)P_i仍能参入CF_1上的结合态核苷酸形成ATP,说明CF_1构型变化所需的能最供给有的不是以AH~+或⊿E形式,设想有一种膜上高能态(M~*)直接参与。这M~*的性质及其在光合作用能量转化过程中的意义将有待深入研究。  相似文献   

17.
(1)黄化小麦幼苗初变绿时,光合磷酸化活力之发生远较叶绿素的生成为迟。在实验条件下,照光变绿3小时后,才可测得光合磷酸化活力,且其按叶绿素为基础计算的活力随照光变绿时间的增加而增加,至照光变绿7—8小时后,叶绿体上叶绿素含量尚在继续增加,但光合磷酸化活力则趋向恒定。(2)在黄化幼苗变绿初期,测得的循环光合磷酸化ATP形成能力较非循环光合磷酸化ATP形成能力高得多,以后较接近;但将循环光合磷酸化之ATP形成能力与非循环光合磷酸化之放氧能力相比较,则其比例在不同时期相差不大。这说明,在变绿初期非循环光合磷酸化之ATP形成能力特别小的原因,主要是由于当时它的偶联程度特别低,并不是因为它较循环光合磷酸化多牵涉到放氧等步骤,而这些步骤可能发生得较晚所致。以DCPIPH_2作氢供体的氧化光合磷酸化活力的最初增长情况与以Fe(CN)_6~≡作氢受体的非循环光合磷酸化ATP形成能力的增长情况一样,均比以PMS促进的循环光合磷酸化活力增长时间为晚,这结果也有助于证明非循环光合磷酸化ATP形成能力增长较晚的原因与它牵涉到放氧步骤无关。(3)使黄化变绿幼苗光合磷酸化、希尔反应活力达到饱和所需的光强度与绿苗所需的相仿。变绿初期的叶绿体,其光合磷酸化作用有很强的“光强效应”,卽弱光下电子传递速度慢、PSP活力低时,与磷酸化的偶联程度会急剧下降。这现象可能是造成变绿初期测得的非循环光合磷酸化ATP形成能力特别低的原因。(4)黄化幼苗变绿时,同化CO_2能力之发生时间与光合磷酸化活力之发生时间差别不大,但以叶绿素为基础计算,前者的活力较早达到恒定。  相似文献   

18.
关于光合磷酸化的概念   总被引:2,自引:0,他引:2  
最近 ,《植物生理学通讯》“教学园地”栏中刊载了宋占午先生[1] 的《植物生理学中几个概念之我见》一文 (下称《我见》)。文中有一节谈及非环式光合磷酸化及环式光合磷酸化 (非循环及循环光合磷酸化 )命名等问题。读后有些看法 ,现叙述如下 ,供读者阅读时参考。1 .光合磷酸化的发现和命名的由来   1 95 4年Arnon等[2 ,3] 发现在CO2 缺少时 ,离体叶绿体在光下能把ADP和Pi合成ATP。其反应式为 :ADP Pi 叶绿体 ,光 ATP。 ( 1 )同年 ,Frenkel等[4] 用光合细菌的游离细胞制剂做试验也发现了这种现象 ,从而发现…  相似文献   

19.
类囊体内部介质可被弱有机碱如吡啶、苯胺、咪唑缓冲,致使[H_(in)~ ] 减少,ΛpH幅度降低,光合磷酸化(PSP)反应被抑制,对苯二胺(p—PD)降低ΛpH,但显著促进PSP反应、在MV或PMS系统中均有此现象;在 MV DBMIB;MV DCMU或PMS DBMIB系统中,p—PDH_2重建ΛpH并恢复PSP反应活力。从p—PD(H_2)既具有弱有机碱性质,又可作为电子供体、氢递体,代替QH_2或PQH_2调节电子传递起转移质子的两种作用,解释了p—PD对ΛpH的抑制,却又促进PSP反应的现象。讨论了PSP反应对[H_(in)~ ],ΛpH幅度大小的依赖关系。  相似文献   

20.
减弱春季寒旱生境限制是提高甘肃中东部旱地春小麦产量的关键要素之一。本研究于2016—2018年在甘肃中部半干旱旱作区开展大田试验,以‘陇春35号’为供试品种,设置全膜微垄沟穴播(PRF)、全膜覆土穴播(PMS)和露地穴播(CK)3个处理,测定春小麦不同生育期0~300 cm土层的土壤含水量、0~25 cm土壤温度、叶片生物量、叶片叶绿素(SPAD)、光合速率、蒸腾速率和作物产量,从土壤水热-冠层发育-产量角度揭示PRF处理对土壤水热环境、水分利用效率(WUE)和产量的影响。结果表明: 与CK相比,PRF和PMS处理0~25 cm土层的土壤温度在苗期分别提高2.8和2.5 ℃,灌浆-成熟期分别降低1.4和0.9 ℃;0~300 cm土壤贮水量在播前-苗期分别增加59.7和41.8 mm;0~300 cm耗水量在苗期-灌浆期分别提高46.1和39.8 mm。与PMS处理相比,PRF处理的小麦苗期温度提高0.3 ℃,灌浆-成熟期降低0.5 ℃;播前-苗期0~300 cm土壤贮水量增加18.0 mm,拔节-成熟期耗水量提高13.0 mm。基于对土壤水热条件的优化,PRF和PMS处理的叶片生物量、SPAD值、苗期-灌浆期叶片净光合速率、蒸腾速率均显著高于CK,且PRF处理均显著高于PMS处理。PRF处理比PMS处理和CK分别增产9.1%和36.5%,WUE分别提高5.9%和30.8%。因此,PRF处理能提高苗期地温,降低灌浆-成熟期地温,促进春小麦苗期-灌浆期的耗水,提高了春小麦叶片SPAD值和生物量,增强春小麦苗期-灌浆期旗叶的光合功能,从而实现增产和水分高效利用,而且这一优势在欠水年份(2016和2017年)更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号