首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid spin labels have been used to study lipid-protein interactions in bovine and frog rod outer segment disc membranes, in (Na+, K+)-ATPase membranes from shark rectal gland, and in yeast cytochrome oxidase-dimyristoyl phosphatidylcholine complexes. These systems all display a two component ESR spectrum from 14-doxyl lipid spin-labels. One component corresponds to the normal fluid bilayer lipids. The second component has a greater degree of motional restriction and arises from lipids interacting with the protein. For the phosphatidylcholine spin label there are effectively 55 +/- 5 lipids/200,000-dalton cytochrome oxidase, 58 +/- 4 mol lipid/265,000 dalton (Na+, K+)-ATPase, and 24 +/- 3 and 22 +/- 2 mol lipid/37,000 dalton rhodopsin for the bovine and frog preparations, respectively. These values correlate roughly with the intramembrane protein perimeter and scale with the square root of the molecular weight of the protein. For cytochrome oxidase the motionally restricted component bears a fixed stoichiometry to the protein at high lipid:protein ratios, and is reduced at low lipid:protein ratios to an extent which can be quantitatively accounted for by random protein-protein contacts. Experiments with spin labels of different headgroups indicate a marked selectivity of cytochrome oxidase and the (Na+, K+)-ATPase for stearic acid and for cardiolipin, relative to phosphatidylcholine. The motionally restricted component from the cardiolipin spin label is 80% greater than from the phosphatidylcholine spin label for cytochrome oxidase (at lipid:protein = 90.1), and 160% greater for the (Na+, K+)-ATPase. The corresponding increases for the stearic acid label are 20% for cytochrome oxidase and 40% for (Na+, K+)-ATPase. The effective association constant for cardiolipin is approximately 4.5 times greater than for phosphatidylcholine, and that for stearic acid is 1.5 times greater, in both systems. Almost no specificity is found in the interaction of spin-labeled lipids (including cardiolipin) with rhodopsin in the rod outer segment disc membrane. The linewidths of the fluid spin-label component in bovine rod outer segment membranes are consistently higher than those in bilayers of the extracted membrane lipids and provide valuable information on the rate of exchange between the two lipid components, which is suggested to be in the range of 10(6)-10(7) s-1.  相似文献   

2.
Mattress model of lipid-protein interactions in membranes.   总被引:21,自引:16,他引:5       下载免费PDF全文
A thermodynamic model is proposed for describing phase diagrams of mixtures of lipid bilayers and amphiphilic proteins or polypeptides in water solution. The basic geometrical variables of the model are the thickness of the hydrophobic region of the lipid bilayer and the length of the hydrophobic region of the proteins. The model incorporates the elastic properties of the lipid bilayer and the proteins, as well as indirect and direct lipid-protein interactions expressed in terms of the geometrical variables. The concept of mismatch of the hydrophobic regions of the lipids and proteins is an important ingredient of the model. The general phase behavior is calculated using simple real solution theory. The phase behavior turns out to be quite rich and is used to discuss previous experiments on planar aggregations of proteins in phospholipid bilayers and to propose a systematic study of synthetic amphiphilic polypeptides in bilayers of different thicknesses. The model is used to interpret the influence of the lipid-protein interaction on calorimetric measurements and on local orientational order as determined by deuterium nuclear magnetic resonance.  相似文献   

3.
We previously demonstrated that in Chinese hamster ovary cells scavenger receptor, class B, type I-dependent selective cholesteryl ester uptake occurs in caveolae. In the present study we hypothesized that cholesteryl ester is transported from caveolae through the cytosol to an internal membrane by a caveolin chaperone complex similar to the one we originally described for the transport of newly synthesized cholesterol. To test this hypothesis we incubated Chinese hamster ovary cells expressing scavenger receptor, class B, type I with [(3)H]cholesteryl ester-labeled high density lipoprotein, subfractionated the cells and looked for a cytosolic pool of [(3)H]cholesteryl ester. The radiolabeled sterol initially appeared in the caveolae fraction, then in the cytosol, and finally in the internal membrane fraction. Caveolin IgG precipitated all of the [(3)H]cholesteryl ester associated with the cytosol. Co-immunoprecipitation studies demonstrated that in the presence of high density lipoprotein, but not low density lipoprotein or lipoprotein-deficient serum, caveolin IgG precipitated four proteins: annexin II, cyclophilin 40, caveolin, and cyclophilin A. Caveolin acylation-deficient mutants were used to demonstrate that acylation of cysteine 133 but not cysteine 143 or 156 is required for annexin II association with caveolin and the rapid transport of cholesteryl esters out of caveolae. We conclude that a caveolin-annexin II lipid-protein complex facilitates the rapid internalization of cholesteryl esters from caveolae.  相似文献   

4.
5.
Spin-label ESR studies of lipid-protein interactions in thylakoid membranes   总被引:2,自引:0,他引:2  
G Li  P F Knowles  D J Murphy  I Nishida  D Marsh 《Biochemistry》1989,28(18):7446-7452
Lipid-protein interactions in thylakoid membranes, and in the subthylakoid membrane fractions containing either photosystem 1 or photosystem 2, have been studied by using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted membrane lipids interacting directly with the integral membrane proteins. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with the membrane proteins and to determine the selectivity between the different lipid classes for the lipid-protein interaction. The fractions of motionally restricted lipid in the thylakoid membrane are 0.36, 0.39, and 0.53, for the spin-labeled monogalactosyldiacylglycerol, phosphatidylcholine, the phosphatidylglycerol, respectively. Spin-labeled monogalactosyldiacylglycerol exhibits very little preferential interaction over phosphatidylchline, which suggests that part of the role of monogalactosyldiacylglycerol in thylakoid membranes is structural, as is the case for phosphatidylcholine in mammalian membranes. Spin-labeled phosphatidylglycerol shows a preferential interaction over the corresponding monogalactosyldiacylglycerol and phosphatidylcholine analogues, in contrast to the common behavior of this lipid in mammalian systems. This pattern of lipid selectivity is preserved in both the photosystem 1 and photosystem 2 enriched subthylakoid membrane fractions.  相似文献   

6.
7.
To investigate the physical mechanism by which melittin inhibits Ca-adenosine triphosphatase (ATPase) activity in sarcoplasmic reticulum (SR) membranes, we have used electron paramagnetic resonance spectroscopy to probe the effect of melittin on lipid-protein interactions in SR. Previous studies have shown that melittin substantially restricts the rotational mobility of the Ca-ATPase but only slightly decreases the average lipid hydrocarbon chain fluidity in SR. Therefore, in the present study, we ask whether melittin has a preferential effect on Ca-ATPase boundary lipids, i.e., the annular shell of motionally restricted lipid that surrounds the protein. Paramagnetic derivatives of stearic acid and phosphatidylcholine, spin-labeled at C-14, were incorporated into SR membranes. The electronic paramagnetic resonance spectra of these probes contained two components, corresponding to motionally restricted and motionally fluid lipids, that were analyzed by spectral subtraction. The addition of increasing amounts of melittin, to the level of 10 mol melittin/mol Ca-ATPase, progressively increased the fraction of restricted lipids and increased the hyperfine splitting of both components in the composite spectra, indicating that melittin decreases the hydrocarbon chain rotational mobility for both the fluid and restricted populations of lipids. No further effects were observed above a level of 10 mol melittin/mol Ca-ATPase. In the spectra from control and melittin-containing samples, the fraction of restricted lipids decreased significantly with increasing temperature. The effect of melittin was similar to that of decreased temperature, i.e., each spectrum obtained in the presence of melittin (10:1) was nearly identical to the spectrum obtained without melittin at a temperature approximately 5 degrees C lower. The results suggest that the principal effect of melittin on SR membranes is to induce protein aggregation and this in turn, augmented by direct binding of melittin to the lipid, is responsible for the observed decreases in lipid mobility. Protein aggregation is concluded to be the main cause of inactivation of the Ca-ATPase by melittin, with possible modulation also by the decrease in mobility of the boundary layer lipids.  相似文献   

8.
The compartmentalized production of superoxide (*O(2)(-)) by endosomal NADPH oxidase is important in the redox-dependent activation of NF-kappaB following interleukin 1beta (IL-1beta) stimulation. It remains unclear how *O(2)(-) produced within endosomes facilitates redox-dependent signaling events in the cytoplasm. We evaluated *O(2)(-) movement out of IL-1beta-stimulated endosomes and whether SOD1 at the endosomal surface mediates redox-signaling events required for NF-kappaB activation. The relative outward permeability of NADPH-dependent *O(2)(-) from fractionated endosomes was assessed using membrane-permeable (luminol and lucigenin) and -impermeable (isoluminol) luminescent probes for *O(2)(-). In these studies, approximately 60% of *O(2)(-) efflux out of endosomes was inhibited by treatment with either of two anion channel blockers, 4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) or niflumic acid (NFA). Furthermore, radioisotopic electrodiffusion flux assays on endomembrane proteoliposomes suggested that *O(2)(-) and Cl(-) are transported through the same DIDS-sensitive channel(s). Rab5-based immunoaffinity isolation of IL-1beta-stimulated early endosomes demonstrated SOD1 recruitment to endosomes harboring the IL-1 receptor. Finally, SOD1-deficient cells were found to be defective in their ability to activate NF-kappaB following IL-1beta stimulation. Together, these results suggest that *O(2)(-) exits endosomes through a DIDS-sensitive chloride channel(s) and that SOD1-mediated dismutation of *O(2)(-) at the endosomal surface may produce the localized H(2)O(2) required for redox-activation of NF-kappaB.  相似文献   

9.

Background

Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid.

Methodology/Principal Findings

We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death.

Conclusions/Significance

Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.  相似文献   

10.
11.
MARCKS (Myristoylated Alanine Rich C Kinase Substrate) is a protein known to cross-link actin filament and consequently, is very important in the stabilization of the cytoskeletal structure. In addition, it has been recently demonstrated that the phosphorylation rate of this protein changes during myogenesis and that this protein is implicated in fusion events. For a better understanding of the biological function of MARCKS during myogenesis, we have undertaken to identify and purify this protein from rabbit skeletal muscle. Three chromatographic steps including an affinity calmodulin-agarose column were performed. The existence of a complex between the two proteins was confirmed by non-denaturing gel electrophoresis and immunoprecipitation. Two complexes were isolated which present an apparent molecular weight of about 600 kDa. Such interactions suggest that MARCKS is either a very good PKCalpha substrate and/or a regulator of PKC activity. These results are supported by previous studies showing preferential interactions and co-localization of PKC isozyme and MARCKS at focal adhesion sites. This is the first time that MARCKS has been purified from skeletal muscle and our data are consistent with a major role of this actin- and calmodulin-binding protein in cytoskeletal rearrangement or other functions mediated by PKalpha. Our results provide evidence for a tight and specific association of MARCKS and PKCalpha (a major conventional PKC isozyme in skeletal muscle) as indicated by the co-purification of the two proteins.  相似文献   

12.
Incubation of 8-anilino-1-naphthalene sulfonic acid with ricin and its isolated A and B polypeptide chains showed an increase in fluorescence at 470 nm. The A chain induced more fluorescence enhancement than either ricin or ricin B chain. The addition of B chain to A chain resulted in decreased fluorescence enhancement which was pH dependent. Sephadex gel filtration showed that A and B chain efficiently reassociated and the reassociation was not dependent on formation of the interchain disulfide bond and could not be prevented by high salt concentration.  相似文献   

13.
14.
15.
Ever since the pioneering studies in the 1960s and 70s, the importance of order transitions for cell membrane functions has remained a matter of debate. Recently, it has been proposed that the nonlinear stimulus-response curve of excitable cells, which manifests in all-or-none pulses (action potentials (AP)), is due to a transition in the cell membrane. Indeed, evidence for transitions has accumulated in plant cells and neurons, but studies with other excitable cells are expedient in order to show if this finding is of a general nature. Herein, we investigated intact, motile specimens of the “swimming neuron” Paramecium. The cellular membranes were labelled with the solvatochromic fluorophores LAURDAN or Di-4-ANEPPDHQ. Subsequently, a cell was trapped in a microfluidic channel and investigated by fluorescence spectroscopy. The generalized polarization (GP) of the fluorescence emission from cell cortical membranes (probably plasma and alveolar membranes) was extracted by an edge-finding algorithm. The thermo-optical state diagram, i.e. the dependence of GP on temperature, exhibited clear indications for a reversible transition. This transition had a width of ~10–15 °C and a midpoint that was located ~4 °C below the growth temperature. The state diagrams with LAURDAN and Di-4-ANEPPDHQ had widely identical characteristics. These results suggested that the cortical membranes of Paramecium reside in an order transition regime under physiological growth conditions. Based on these findings, membrane potential fluctuations, spontaneous depolarizing spikes, and thermal excitation of Paramecium was interpreted.  相似文献   

16.
The interaction free energy between a hydrophobic, transmembrane, protein and the surrounding lipid environment is calculated based on a microscopic model for lipid organization. The protein is treated as a rigid hydrophobic solute of thickness dP, embedded in a lipid bilayer of unperturbed thickness doL. The lipid chains in the immediate vicinity of the protein are assumed to adjust their length to that of the protein (e.g., they are stretched when dP > doL) in order to bridge over the lipid-protein hydrophobic mismatch (dP-doL). The bilayer's hydrophobic thickness is assumed to decay exponentially to its asymptotic, unperturbed, value. The lipid deformation free energy is represented as a sum of chain (hydrophobic core) and interfacial (head-group region) contributions. The chain contribution is calculated using a detailed molecular theory of chain packing statistics, which allows the calculation of conformational properties and thermodynamic functions (in a mean-field approximation) of the lipid tails. The tails are treated as single chain amphiphiles, modeled using the rotational isometric state scheme. The interfacial free energy is represented by a phenomenological expression, accounting for the opposing effects of head-group repulsions and hydrocarbon-water surface tension. The lipid deformation free energy delta F is calculated as a function of dP-doL. Most calculations are for C14 amphiphiles which, in the absence of a protein, pack at an average area per head-group ao approximately equal to 32 A2 (doL approximately 24.5 A), corresponding to the fluid state of the membrane. When dP = doL, delta F > 0 and is due entirely to the loss of conformational entropy experienced by the chains around the protein. When dP > doL, the interaction free energy is further increased due to the enhanced stretching of the tails. When dP < doL, chain flexibility (entropy) increases, but this contribution to delta F is overcounted by the increase in the interfacial free energy. Thus, delta F obtains a minimum at dP-doL approximately 0. These qualitative interpretations are supported by detailed numerical calculations of the various contributions to the interaction free energy, and of chain conformational properties. The range of the perturbation of lipid order extends typically over few molecular diameters. A rather detailed comparison of our approach to other models is provided in the discussion.  相似文献   

17.
18.
《The Journal of cell biology》1988,107(6):2679-2688
Cilia were isolated from Tetrahymena thermophila, extracted with Triton X-114, and the detergent-soluble membrane + matrix proteins separated into Triton X-114 aqueous and detergent phases. The aqueous phase polypeptides include a high molecular mass polypeptide previously identified as a membrane dynein, detergent-soluble alpha and beta tubulins, and numerous polypeptides distinct from those found in axonemes. Integral membrane proteins partition into the detergent phase and include two major polypeptides of 58 and 50 kD, a 49-kD polypeptide, and 5 polypeptides in relatively minor amounts. The major detergent phase polypeptides are PAS-positive and are phosphorylated in vivo. A membrane-associated ATPase, distinct from the dynein-like protein, partitions into the Triton X-114 detergent phase and contains nearly 20% of the total ciliary ATPase activity. The ATPase requires Mg++ or Ca++ and is not inhibited by ouabain or vanadate. This procedure provides a gentle and rapid technique to separate integral membrane proteins from those that may be peripherally associated with the matrix or membrane.  相似文献   

19.
Evidence for protein synthesis in synaptosomal membranes   总被引:3,自引:0,他引:3  
  相似文献   

20.
Titration of TMV-A-protein from pH 8 to 7 (20°C) or raising the temperature from 4° to 20°C (pH 7) produces, within a few minutes, a reversible change in the aromatic region of the CD-spectrum, before any extensive aggregation has taken place. This spectral change is solely a matter of the conditions of the solution and not of the history of the protein. There is no further CD-change during the slow aggregation process. Thus there must be some proton-uptake within the A-protein. The results are discussed with regard to the different interpretations of the role of A-protein or double-disc in the elongation-step of TMV-“in vitro” -self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号