首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divalent cations, such as Mg2+, Ba2+, and Co2+, are known to mimic the effects of Ca2+ in parathyroid cells, but it is not clear whether the mechanism of their action is the same as that of Ca2+. We have shown that extracellular Ca2+ concentration ([Ca2+]e) regulates the distribution and recycling of cell-surface heparan sulfate (HS) proteoglycans in a rat parathyroid cell line; at normal to high [Ca2+]e (e.g., 2 mM) HS proteoglycans are primarily localized intracellularly, while at low [Ca2+]e (0.05 mM) they are translocated to the cell surface and rapidly recycle (Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C., 1990, J. Biol. Chem. 265, 13661-13668). We now show that a high concentration of Mg2+ (8 mM) reduces the amount of recycling HS proteoglycans in low [Ca2+]e. However, the primary effects of high Ca2+ and high Mg2+ on the recycling HS proteoglycans are different. High [Ca2+]e causes translocation of HS proteoglycans to intracellular compartments, while high Mg2+ stimulates cleavage of their core proteins and subsequent shedding of HS proteoglycans into the medium, thereby depleting the recycling molecules. However, high Mg2+ does not induce shedding of HS proteoglycans in high [Ca2+]e. The effects of Ba2+ and Co2+ were similar to those of Mg2+, but Sr2+ showed no significant effects on HS proteoglycan translocation. Otherwise, 8 mM Mg2+ did not alter biosynthesis or intracellular catabolism of HS proteoglycans. These observations suggest that the recycling of HS proteoglycans in parathyroid cells is sensitive only to [Ca2+]e, whereas several other divalent cations can deplete the recycling HS proteoglycans by a distinctly different mechanism. Thus, the mechanism by which Ca2+ regulates the amounts of the recycling HS proteoglycans may be more physiological and play a functional role in parathyroid cells.  相似文献   

2.
The regulation of the cellular distribution of proteoglycans in a clonal rat parathyroid cell line by extracellular Ca2+ concentrations ([Ca2+]e) was studied. Proteoglycans synthesized by the cells metabolically labeled with [35S]sulfate have been shown to be almost exclusively heparan sulfate (HS) proteoglycans (Yanagishita, M., Brandi, M.L., and Sakaguchi, K. (1989) J. Biol. Chem. 264, 15714-15720), which are generally associated with the plasma membrane. The proportion of HS proteoglycans on the cell surface was approximately 20% in 2.1 mM (high) [Ca2+]e, whereas it increased to 50-60% in 0.05 mM (low) [Ca2+]e. Cell-associated HS proteoglycans redistribute in response to changing [Ca2+]e with a t 1/2 less than 4 min; HS proteoglycans appear on the cell surface as [Ca2+]e decreases and disappear from the cell surface as [Ca2+]e increases. Further, HS proteoglycans on the cell surface recycle to and from an intracellular compartment approximately 10 times before their degradation in low [Ca2+]e but do not recycle in high [Ca2+]e. The distribution of newly synthesized HS proteoglycans is regulated by [Ca2+]e but is independent of [Ca2+]e during biosynthesis. In low [Ca2+]e, at least 50% of the HS proteoglycans pulse-labeled for 10 min are transported from the Golgi complex to the cell surface or to the recycling compartment with a t 1/2 of approximately 20 min. Another approximately 10% appear on the cell surface in either low or high [Ca2+]e in a compartment with a long half-life. Addition of Mg2+ or Ba2+ to the low [Ca2+]e cultures had little effect on the distribution of HS proteoglycans. These observations suggest that [Ca2+]e specifically regulates the distribution and recycling of cell-associated HS proteoglycans in the parathyroid cells.  相似文献   

3.
The distribution of heparan sulfate (HS) proteoglycans in clonal rat parathyroid cells is regulated by the extracellular Ca2+ concentration, which is a principal factor for parathyroid cell function (Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C. (1990) J. Biol. Chem. 265, 13661-13668). Increasing the concentration of extracellular Ca2+ in the physiological range redistributes HS proteoglycans from the cell surface to an intracellular compartment. We have now examined effects of the extracellular Ca2+ concentration on the metabolism of the HS proteoglycans in detail using [35S]sulfate metabolic labeling-chase experiments. Two distinct metabolic pathways were demonstrated: (i) the intracellular generation of HS chains from HS proteoglycans in prelysosomal compartments followed by their release into the medium (pathway 1), and (ii) intracellular generation of HS oligosaccharides from HS chains in prelysosomal compartments, which are eventually degraded into free sulfate in lysosomes (pathway 2). The HS oligosaccharides were exclusively present within the cells, whereas HS chains were found primarily in the medium. The cells do not internalize either HS proteoglycans or HS chains from the medium. These observations indicate that these two degradation pathways are independent. In addition to these pathways, approximately 15% of the HS proteoglycans were released into the medium as a proteoglycan form. Treatment of cells with chloroquine, a lysosomotropic agent, did not affect generation of HS chains but inhibited conversion of HS chains to HS oligosaccharides or to free sulfate and resulted in the release of HS chains from the cells. The drug did not affect metabolic pathway 1. The extracellular Ca2+ concentration did not alter these intracellular degradation pathways for HS proteoglycans in the parathyroid cells. Thus, extracellular Ca2+ appears to regulate only the distribution of HS proteoglycans between the cell surface and intracellular compartments, and the process of cycling between these compartments when extracellular Ca2+ is low.  相似文献   

4.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

5.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

6.
Ca2+ as an extracellular signal in bone   总被引:3,自引:0,他引:3  
Dvorak MM  Riccardi D 《Cell calcium》2004,35(3):249-255
Bone is the major sink and store for calcium and it fulfils essential roles in the maintenance of extracellular free ionised calcium concentration ([Ca2+]e) within its homeostatic range (1.1-1.3 mM). In response to acute hypercalcaemia or hypocalcaemia, Ca2+ is rapidly transported into or out of bone. Bone turnover (and therefore bone Ca2+ turnover) achieves the long-term correction of the [Ca2+]e by the metabolic actions of osteoblasts and osteoclasts, as they respectively incorporate or release Ca2+ from bone. These processes are regulated by the actions of hormones, such as parathyroid hormone (PTH), the release of which is a function of the [Ca2+]e, and is regulated by the action of the Ca2+-sensing receptor (CaR) in the parathyroid gland. Tissue culture studies indicate that bone cells also directly respond to increasing and decreasing [Ca2+]e in their vicinity, independently of the systemic factors. Nevertheless, further studies are necessary to identify how the acute and long-term local changes in [Ca2+]e affect bone cells and the physiological processes they are involved in. Also, the molecular mechanisms which enable the bone cells to sense and respond to [Ca2+]e are not clear. Like the parathyroid cells, bone cells also express the CaR, and accumulating evidence indicates the involvement of this receptor in their responses to the changing extracellular ionic environment.  相似文献   

7.
Voets T 《Neuron》2000,28(2):537-545
In neurosecretory cells, intracellular Ca2+ ([Ca2+]i) not only acts as the trigger for secretion but also regulates earlier steps in the secretory pathway. Here, a novel approach was developed to control [Ca2+]i over a broad concentration range, which allowed the quantification of three distinct actions of [Ca2+]i on large dense-core vesicle (LDCV) fusion in chromaffin cells from mouse adrenal slices. Basal [Ca2+]i regulated the transfer of vesicles toward a slowly releasable state, whereas further maturation to the readily releasable state was Ca2+ independent. [Ca2+]i levels above 3 microM triggered exocytosis of all readily and slowly releasable vesicles in two parallel, kinetically distinct fusion reactions. In a molecular context, these results suggest that Ca2+ acts both before and after trans-SNARE complex formation to regulate fusion competence and fusion kinetics of LDCVs.  相似文献   

8.
Osteoclast activity is thought to be regulated by calcitonin, as well as by the level of ionised calcium generated locally as a result of bone resorption. The exposure of isolated osteoclasts to elevated ambient calcium levels has been shown to lower resorptive activity and to reduce rates of enzyme release. We have attempted to determine whether these effects are mediated by a divalent cation-sensitive "calcium receptor," as has been reported for the parathyroid chief cells. Thus, we compared the effect of alkaline earth metal cations on osteoclast function using a morphometric measure of bone resorption and a spectrophotometric method for measuring the activity of the released enzyme, acid phosphatase. The exposure of resorbing osteoclasts to between 5 and 20 mM extracellular ionised calcium ([Ca2+]e) inhibited bone resorption and enzyme release to an extent similar to that seen with 0.1 to 10 microM ionomycin. The effect of combining submaximal concentrations of [Ca2+]e (15 mM) and ionomycin (0.1 microM) resulted in additivity, suggesting that the influence of [Ca2+]e on bone resorption was mediated by elevated intracellular calcium levels ([Ca2+]i). The other cations studied (Mg2+, Ba2+) were effective and elicited similar effects, although some required higher concentrations. Thus, whilst Ca2+ and Mg2+ were effective at 10 to 15 mM levels, Ba2+ was effective only at high (20 mM) concentrations. These findings are consistent with an influence of [Ca2+]e on osteoclast activity through an action on a surface membrane "calcium receptor" that can also bind other divalent cations, rather than by passive changes of [Ca2+]i with [Ca2+]e elevation.  相似文献   

9.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

10.
The effects of nitrogen monoxide (NO)-related compounds on cytosolic free Ca2+ concentrations ([Ca2+]i) and noradrenaline (NA) release in neurosecretory PC12 cells were investigated. The addition of S-nitroso-cysteine (SNC) stimulated [Ca2+]i increases from an intracellular Ca2+ pool continuously in a concentration-dependent manner. Other NO donors, which stimulate cyclic GMP accumulation, did not cause [Ca2+]i increases. After treatment with 0.2 mM SNC, transient increases in [Ca2+]i from the Ca2+ pool induced by caffeine were completely abolished. The addition of N-ethylmaleimide (NEM) caused sustained [Ca2+]i increases from the intracellular Ca2+ pool. Furthermore, caffeine did not stimulate further [Ca2+]i increases in PC12 cells pretreated with NEM. These findings suggest that SNC and NEM predominantly interact with a caffeine-sensitive Ca2+ pool. The addition of dithiothreitol (DTT) to 0.4 mM SNC-stimulated cells reduced [Ca2+]i to basal levels, and the addition of DTT to NEM-stimulated cells locked [Ca2+]i at high levels. The stimulatory effects of SNC but not NEM were not abolished by pretreatment with DTT. These findings suggest that modification of the oxidation status of the sulfhydryl groups on the caffeine-sensitive receptors by SNC or NEM regulates Ca2+ channel activity in a reversible manner. SNC did not stimulate NA release by itself but did inhibit ionomycin-stimulated NA release. In contrast, NEM stimulated NA release in the absence of extracellular CaCl2 and further enhanced ionomycin-stimulated NA release. Ca2+ mobilization by SNC from the caffeine-sensitive pool was not a sufficient factor, and other factors stimulating NA release may be negatively regulated by SNC.  相似文献   

11.
12.
In isotonic buffer, IgE receptor-mediated exocytosis from rat basophilic leukemia cells is dependent on extracellular Ca2+, with half-maximal degranulation requiring 0.4 mM Ca2+. No significant exocytosis occurs in the absence of extracellular Ca2+. This absolute requirement for Ca2+ is eliminated by suspending the cells in a hypotonic buffer containing 60 to 80 mM K+; Na+ cannot substitute for K+. Optimal Ca2(+)-independent exocytosis occurs in a buffer containing 20 mM dipotassium Pipes, pH 7.1, 40 mM KCl, 5 mM glucose, 7 mM Mg acetate, 0.1% BSA, and 1 mM EGTA. The cells maintain this Ca2(+)-independent exocytosis even if they are preincubated with 1 mM EGTA for 40 min at 37 degrees C before triggering. Exocytosis is eliminated as isotonicity is approached by adding sucrose, NaCl, KCl, or potassium glutamate to the buffer. Quin 2 fluorescence measurements reveal only a very small rise in [Ca2+]i when the cells are triggered in hypotonic buffer in the absence of extracellular Ca2+ and the presence of 1 mM EGTA. In isotonic buffer, degranulation does not occur under conditions that lead to such a small rise in [Ca2+]i. Sustained IgE receptor-mediated phosphatidylinositol hydrolysis, which is also Ca2+ dependent in isotonic buffer, becomes independent of Ca2+ in the hypotonic buffer. In fact, the rate of phosphatidylinositol hydrolysis in hypotonic buffer in the absence of Ca2+ (and presence of 1 mM EGTA) is twice that observed in isotonic buffer in the presence of 1 mM Ca2+. These data show that in hypotonic buffer, the requirement of IgE receptor-mediated PI hydrolysis for extracellular Ca2+ is eliminated, and degranulation proceeds with a [Ca2+]i of 0.1 microM, the baseline level of [Ca2+]i found in resting cells. These results are consistent with the hypothesis that, in isotonic buffer, the Ca2+ requirement for mast cell degranulation is for the generation of second messengers via hydrolysis of membrane phosphatidylinositols.  相似文献   

13.
We analysed in Paramecium tetraurelia cells the role of the infraciliary lattice, a cytoskeletal network containing numerous centrin isoforms tightly bound to large binding proteins, in the re-establishment of Ca2+ homeostasis following exocytosis stimulation. The wild type strain d4-2 has been compared with the mutant cell line Delta-PtCenBP1 which is devoid of the infraciliary lattice ("Delta-PtCenBP1" cells). Exocytosis is known to involve the mobilization of cortical Ca2+-stores and a superimposed Ca2+-influx and was analysed using Fura Red ratio imaging. No difference in the initial signal generation was found between wild type and Delta-PtCenBP1 cells. In contrast, decay time was greatly increased in Delta-PtCenBP1 cells particularly when stimulated, e.g., in presence of 1mM extracellular Ca2+, [Ca2+]o. Apparent halftimes of f/f0 decrease were 8.5 s in wild type and approximately 125 s in Delta-PtCenBP1 cells, requiring approximately 30 s and approximately 180 s, respectively, to re-establish intracellular [Ca2+] homeostasis. Lowering [Ca2+]o to 0.1 and 0.01 mM caused an acceleration of intracellular [Ca2+] decay to t(1/2)=33 s and 28 s, respectively, in Delta-PtCenBP1 cells as compared to 8.1 and 5.6, respectively, for wild type cells. We conclude that, in Paramecium cells, the infraciliary lattice is the most efficient endogenous Ca2+ buffering system allowing the rapid downregulation of Ca2+ signals after exocytosis stimulation.  相似文献   

14.
Though only actual local free Ca2+ concentrations, [Ca2+], rather than total Ca concentrations, [Ca], govern cellular responses, analysis of total calcium fluxes would be important to fully understand the very complex Ca2+ dynamics during cell stimulation. Using Paramecium cells we analyzed Ca2+ mobilization from cortical stores during synchronous (< or = 80 ms) exocytosis stimulation, by quenched-flow/cryofixation, freeze-substitution (modified for Ca retention) and X-ray microanalysis which registers total calcium concentrations, [Ca]. When the extracellular free calcium concentration, [Ca2+]e, is adjusted to approximately 30 nM, i.e. slightly below the normal free intracellular calcium concentration, [Ca2+]i = 65 nM, exocytosis stimulation causes release of 52% of calcium from stores within 80 ms. At higher extracellular calcium concentration, [Ca2+]e = 500 microM, Ca2+ release is counterbalanced by influx into stores within the first 80 ms, followed by decline of total calcium, [Ca], in stores to 21% of basal values within 1 s. This includes the time required for endocytosis coupling (350 ms), another Ca2+-dependent process. To confirm that Ca2+ mobilization from stores is superimposed by rapid Ca2+ influx and/or uptake into stores, we substituted Sr2+ for Ca2+ in the medium for 500 ms, followed by 80 ms stimulation. This reveals reduced Ca signals, but strong Sr signals in stores. During stimulation, Ca2+ is spilled over preformed exocytosis sites, particularly with increasing extracellular free calcium, [Ca2+]e. Cortically enriched mitochondria rapidly gain Ca signals during stimulation. Balance calculations indicate that total Ca2+ flux largely exceeds values of intracellular free calcium concentrations locally required for exocytosis (as determined previously). Our approach and some of our findings appear relevant also for some other secretory systems.  相似文献   

15.
Regulatory effects of extracellular magnesium ions ([Mg2+]o) on intracellular free ionized calcium ([Ca2+]i) were studied in cultured vascular smooth muscle cells (VSMCs) from rat aorta by use of the fluorescent indicator fura-2 and digital imaging microscopy. With normal Mg2+ (1.2 mM)-containing incubation media, [Ca2+]i in VSMCs was 93.6 +/- 7.93 nM with a heterogeneous cellular distribution. Lowering [Mg2+]o to 0 mM or 0.3 mM (the lowest physiological range) resulted in 5.8-fold (579.5 +/- 39.99 nM) and 3.5-fold (348.0 +/- 31.52 nM) increments of [Ca2+]i, respectively, without influencing the cellular distribution of [Ca2+]i. Surprisingly, [Mg2+]o withdrawal induced changes of cell geometry in many VSMCs, i.e., the cells rounded up. However, elevation of [Mg2+]o up to 4.8 mM only induced slight decrements of [Ca2+]i (mean = 72.0 +/- 4.55 nM). The large increment of [Ca2+]i induced by [Mg2+]o withdrawal was totally inhibited when [Ca2+]o was removed. The data suggest that: (1) [Mg2+]o regulates the level of [Ca2+]i in rat aortic smooth muscle cells, and (2) [Mg2+] acts as an important regulatory ion by modulating cell shapes in cultured VSMc and their metabolism to control vascular contractile activities.  相似文献   

16.
17.
Sheep anterior-pituitary cells permeabilized with Staphylococcus aureus alpha-toxin were used to investigate the role of cyclic AMP (cAMP) in exocytosis of luteinizing hormone (lutropin, LH) under conditions where the intracellular free Ca2+ concentration ([Ca2+]free) is clamped by Ca2+ buffers. At resting [Ca2+]free (pCa 7), cAMP rapidly stimulated LH exocytosis (within 5 min) and continued to stimulate exocytosis for at least 30 min. When cAMP breakdown was inhibited by 3-isobutyl-1-methylxanthine (IBMX), the concentration giving half-maximal response (EC50) for cAMP-stimulated exocytosis was 10 microM. cAMP-stimulated exocytosis required millimolar concentrations of MgATP, as has been found with Ca2(+)- and phorbol-ester-stimulated LH exocytosis. cAMP caused a modest enhancement of Ca2(+)-stimulated LH exocytosis by decreasing in the EC50 for Ca2+ from pCa 5.6 to pCa 5.9, but had little effect on the maximal LH response to Ca2+. Activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) dramatically enhanced cAMP-stimulated LH exocytosis by both increasing the maximal effect 5-7-fold and decreasing the EC50 for cAMP to 3 microM. This synergism between cAMP and PMA was further augmented by increasing the [Ca2+]free. Gonadotropin-releasing hormone (gonadoliberin, GnRH) stimulated cAMP production in intact pituitary cells. Since GnRH stimulation is reported to activate PKC and increase the intracellular [Ca2+]free, our results suggest that a synergistic interaction of the cAMP, PKC and Ca2+ second-messenger systems is of importance in the mechanism of GnRH-stimulated LH exocytosis.  相似文献   

18.
Spider VS-3 mechanoreceptor neurons have a low-voltage-activated Ca2+ current that raises intracellular calcium concentration [Ca2+] when they are depolarized by agonists of GABAA receptors or fire action potentials. The Ca2+ rise produces negative feedback by modulating the mechanoreceptor current and regulates Ca2+- and voltage-activated K+ currents. However, nothing is known about Ca2+ buffering in VS-3 neurons. Dynamic changes in VS-3 neuron intracellular [Ca2+] were measured using the fluorescent Ca2+ indicator Oregon Green BAPTA-1 (OG488) to understand Ca2+ buffering and clearance. Intracellular OG488 concentration increased slowly over more than 2 h as it diffused through a sharp intracellular microelectrode and spread through the cell. This slow increase was used to measure endogenous Ca2+ buffering and clearance by the added buffer technique, with OG488 acting as both added exogenous buffer and Ca2+ indicator. [Ca2+] was raised for brief periods by regular action potential firing, produced by pulsed electric current injection through the microelectrode. The resulting rise and fall of [Ca2+] were well fitted by the single compartment model of Ca2+ dynamics. With earlier ratiometric [Ca2+] estimates, these data gave an endogenous Ca2+ binding ratio of 684. Strong Ca2+ buffering may assist these neurons to deal with rapid changes in mechanical inputs.  相似文献   

19.
The role for intracellular Ca2+ in modulating activity of the Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. Na+/H+ exchange was activated by four distinct stimuli: 1) phorbol 12-myristate 13-acetate, 2) thrombin, 3) cell shrinkage, and 4) intracellular acid loading. [Ca2+]i was independently varied between 40 and 200 nM by varying the bathing Ca2+ from 10 nM to 5.0 mM. Thrombin-induced intracellular Ca2+ transients were blocked with bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (MAPTAM). In the absence of stimulators of Na+/H+ exchange, varying [Ca2+]i above or below the basal level of 140 nM did not activate Na+/H+ exchange spontaneously. However, varying [Ca2+]i did affect stimulus-induced activation of Na+/H+ exchange. Activation of the exchanger by phorbol 12-myristate 13-acetate was blunted by reduced intracellular Ca2+ (half-maximal activity at 50-90 nM [Ca2+]i), consistent with a Ca2+ requirement for protein kinase C (Ca2+/phospholipid-dependent enzyme). Activation of the exchanger by thrombin in protein kinase C-depleted cells was also sensitive to reduced intracellular Ca2+ (half-maximal activity at 90-140 nM [Ca2+]i) and was increased 40% by raising [Ca2+]i to 200 nM. Activation of the exchanger by cell shrinkage or intracellular acid loads was not significantly affected over the range of [Ca2+]i tested. Thus, altered [Ca2+]i does not itself affect Na+/H+ exchange activity in vascular smooth muscle but instead modulates activation of the transporter by particular stimuli.  相似文献   

20.
Both parathyroid hormone secretion and cell growth are negatively regulated by extracellular calcium in parathyroid cells. The mechanism of growth regulation by calcium has been unknown. Previously, we reported that clonal parathyroid cells (PT-r cells) bear two high affinity receptors for acidic fibroblast growth factor (aFGF) and that at least a subpopulation of the receptors with a higher molecular mass carries heparan sulfate (HS) glycosaminoglycan chains which give the receptor higher affinity (Sakaguchi, K., Yanagishita, M., Takeuchi, Y., and Aurbach, G. D. (1991) J. Biol. Chem. 266, 7270-7278). Here, I have found that the parathyroid cells expressed aFGF and that aFGF receptors with lower affinity apparently translocated in response to changing extracellular calcium concentrations. Expression of both aFGF mRNA and peptide was suppressed by calcium. Cells had more ligand-accessible receptors on the cell surface at lower calcium concentrations. This apparent translocation was temperature-dependent but independent of de novo protein synthesis. Heparin or HS glycosaminoglycans are a prerequisite for the FGF receptor encoded by flg gene to bind basic FGF (Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991) Cell 64, 841-848). In PT-r cells, major cellular HS proteoglycans redistribute between intracellular and extracellular compartments with more HS proteoglycans expressed on the cell surface at lower calcium concentrations (Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C. (1990) J. Biol. Chem. 265, 13661-13668). However, this redistribution of HS proteoglycans cannot explain the difference in bindability of radiolabeled aFGF to its receptors in different calcium concentrations, since addition of heparin did not change the binding of radiolabeled aFGF to the receptors either at high or low calcium conditions. In concordance with the apparent translocation of aFGF receptors, thymidine incorporation was stimulated by decreasing extracellular calcium concentrations with further stimulation by added aFGF. Anti-aFGF antibody inhibited thymidine incorporation by more than 32% in the cells exposed to 0.05 mM Ca2+ shortly before adding [3H]thymidine, whereas the incorporation was not significantly affected by the antibody at 0.7 mM Ca2+. Cell growth was also stimulated by low calcium. Anti-aFGF antibody inhibited cell growth significantly only at low calcium concentrations. From these observations, an aFGF autocrine system including the apparent translocation of aFGF receptors may explain, if not entirely, the mechanism by which calcium regulates parathyroid cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号