首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《The Journal of cell biology》1983,97(5):1612-1621
Physico-chemical properties and interaction with actin of an actin- depolymerizing protein from mature starfish oocytes were studied. This protein, which is called depactin, exists in a monomeric form under physiological conditions. Its molecular weight is approximately 20,000 for the native protein and approximately 17,000 for denatured protein. The Glu + Asp/Lys + Arg molar ratio of this protein is 1.55. The apparent pl of the denatured depactin is approximately 6. The extent of actin polymerization is reduced by the presence of depactin; however, the rate of polymerization seems to be accelerated as measured spectrophotometrically at 238nm. This effect is interpreted to indicate that depactin cut the newly formed filaments into small fragments, thereby increasing the number of the filament ends to which monomers are added. The apparent critical concentration of actin for polymerization, as determined by viscometry or flow birefringence measurement, is increased by the presence of depactin in a concentration-dependent manner. Raising the pH of the solution does not reverse the action of depactin. The molar ratio of actin and depactin, which interact with each other, is estimated to be 1:1 by means of a cross-linking experiment using a water-soluble carbodiimide. Depactin binds to a DNase I-Sepharose column via actin and is selectively eluted with 0.6 M KCl or 0.6 M Kl. The association constant between actin and depactin is estimated, using the column, to be 2-3 X 10(6) M-1. The content of depactin in the high-speed supernatant of the oocyte extract is determined to be 1%; this can act upon approximately 63% of the actin in the supernatant.  相似文献   

2.
Myosin and actin were purified from ascidian smooth muscle. Ascidian myosin contained two classes of light chains and the pH dependence of Ca2+-activated ATPase and the KCl dependence of actin-activated ATPase of ascidian myosin differed from those of vertebrate skeletal myosin. Troponin-tropomyosin complex from ascidian increased the ATPase activity of ascidian reconstituted actomyosin in a Ca2+-dependent manner. Ascidian myosin provided the reconstituted actomyosin with the responsiveness to calcium ions. Two actin isoforms were present in ascidian, which were distinguished by isoelectric points.  相似文献   

3.
Myosin binding protein C (MyBPC) is a multidomain protein associated with the thick filaments of striated muscle. Although both structural and regulatory roles have been proposed for MyBPC, its interactions with other sarcomeric proteins remain obscure. The current study was designed to examine the actin-binding properties of MyBPC and to define MyBPC domain regions involved in actin interaction. Here, we have expressed full-length mouse cardiac MyBPC (cMyBPC) in a baculovirus system and shown that purified cMyBPC binds actin filaments with an affinity of 4.3 ± 1.1 μM and a 1:1 molar ratio with regard to an actin protomer. The actin binding by cMyBPC is independent of protein phosphorylation status and is not significantly affected by the presence of tropomyosin and troponin on the actin filament. In addition, cMyBPC-actin interaction is not modulated by calmodulin. To determine the region of cMyBPC that is responsible for its interaction with actin, we have expressed and characterized five recombinant proteins encoding fragments of the cMyBPC sequence. Recombinant N-terminal fragments such as C0-C1, C0-C4, and C0-C5 cosediment with actin in a linear, nonsaturable manner. At the same time, MyBPC fragments lacking either the C0-C1 or C0-C4 region bind F-actin with essentially the same properties as full-length protein. Together, our results indicate that cMyBPC interacts with actin via a single, moderate affinity site localized to the C-terminal region of the protein. In contrast, certain basic regions of the N-terminal domains of MyBPC may act as small polycations and therefore bind actin via nonspecific electrostatic interactions.  相似文献   

4.
Myosin-like protein and actin-like protein from E. coli formed filaments very similar in structure to those of myosin and actin from skeletal muscle. At 0.2 M KCl, a large number of "thick filaments" of uniform size (about 0.6-0.7 micron long and about 20 nm wide) was present. These thick filaments aggregated as the KCl concentration decreased to less than 0.2 M. Filaments of actin-like protein were decorated with muscle heavy meromyosin, showing "arrowheads". The arrowhead structure disappeared in the presence of ATP. A mixture of E. coli myosin-like protein and rabbit skeletal actin exhibited a gelation phenomenon on the additon of ATP. The phenomenon was reversible and showed ATP specificity. However, the gelation phenomenon was not observed with the mixture of E. coli actin-like protein and E. coli myosin-like protein. These results provide compelling evidence that the E. coli myosin-like protein and actin-like protein we isolated are essentially identical to myosin and actin, respectively.  相似文献   

5.
The process of sperm incorporation into starfish (Asterias amurensis) oocytes was examined by electron and fluorescence microscopy. The fertilization cone began to form at the place where the acrosomal process fused with the egg surface and developed into an inverted conical mass containing a small amount of electron-dense cytoplasm. Microfilaments, which stained with NBD-phallacidin, were detected in the fertilization cone. Microvillar protrusions from the fully grown fertilization cone engulfed the sperm head outside the fertilization membrane. The sperm organelles were incorporated into the egg cortex with the absorption of the protrusions. Cytochalasin B inhibited sperm incorporation, fertilization cone formation, and actin filament organization. It is suggested that the development and reduction of the fertilization cone, which depend on the functioning of microfilaments, are necessary for sperm incorporation in starfish.  相似文献   

6.
7.
While the age-related loss in muscle mass partially explains the decline in strength, other yet undefined mechanisms contribute. This study investigates whether changes in myosin-actin stoichiometry and oxidative modification could help explain the decrement in muscle strength with aging. Protein expression and oxidation were evaluated in myosin and actin isolated from the soleus and semimembranosus muscles from young adult, old, and very old Fischer 344 rats. In the soleus muscle, actin and myosin content did not change with aging. In the semimembranosus, actin content was stable, but myosin exhibited decreased content in muscles from very old rats, resulting in a decrease in the myosin-to-actin ratio. 3-Nitrotyrosine and 4-hydroxy-2-nonenal were used as markers of protein oxidative damage. Although myosin and actin are modified with 3-nitrotyrosine and 4-hydroxy-2-nonenal, the extent of chemical modification does not increase with age. The results suggest that the decline in force production with age is not due to the accumulation of these two specific markers of protein oxidation on the myofibrillar proteins. Additionally, age-dependent changes in myofibrillar stoichiometry do not contribute to the decline in force production in the soleus, but may play a role in the semimembranosus with advanced age.  相似文献   

8.
In this issue of Developmental Cell, Sokac et al. (2006) describe an intriguing new role for an actin-based motor protein in restraining actin polymerization during endocytosis in Xenopus oocytes.  相似文献   

9.
Polymerized actin sperm of the starfish Pisaster ochraceus is stained intensely by NBD-phallacidin in the fluorescence microscope. Parallel phase contrast, Nomarski and scanning electron microscopy (SEM) illustrate other changes brought about in sperm treated with the calcium ionophore A23187 and NH4Cl. A complete acrosome reaction is elicited by A23187, including exocytosis of the acrosomal vesicle and formation of a long acrosomal process which is filled with polymerized actin. Considerable actin polymerization is caused by NH4Cl, but the acrosomal vesicle is not exocytosed. The various patterns of NH4Cl-mediated polymerization of sperm actin always include bundles which project backward from the actomere and often others which project quite far forward in front of the acrosomal vesicle. These patterns are discussed in terms of the possible triggers and mechanisms of forming actin bundles in sperm.  相似文献   

10.
Unlike other enzymes of the aromatic multienzyme system, chorismate synthase and the aromatic complex of Neurospora crassa were found to bind to a column of cellulose phosphate and to elute at a relatively high concentration of phosphate (~ 0.2 M). The fact that other enzymes with similar ionic properties failed to bind to phosphocellulose suggests that the binding of the former two enzyme systems is due to a specific affinity for phosphate. This conclusion is not only supported by the fact that these same enzymes did not bind to a column of carboxymethyl cellulose, but also is consistent with the nature of the catalytic reactions of the enzymes. Both the shikimate kinase enzyme of the aromatic complex and chorismate synthase would be expected to have active sites which accomodate a phosphate moiety. We anticipate that other enzymes which involve phospho-substrates will also be amendable to this procedure.  相似文献   

11.
Myosin binding to actin. Structural analysis using myosin fragments   总被引:2,自引:0,他引:2  
The actin-binding property of the myosin head 20 K (K = 10(3) Mr) fragment has been examined by a structural assay. A new fragment is produced by digestion of scallop myosin synthetic filaments with a lysine-specific protease. This fragment consists of the rod together with two "nubs" corresponding to the 20 K fragment, which retain both the regulatory and essential light chains. Myosin filaments, digested for different lengths of time, were mixed with F-actin and visualized by electron microscopy after negative staining. When the head is cleaved, but the head fragments remain associated, the filaments bind actin in an ATP-sensitive manner. Filaments made primarily of the nub-containing fragments, however, bind actin very poorly. In addition, electron microscopic characterization of actin-binding by the isolated tryptic 20 K fragment from chicken myosin indicates that binding of this fragment to actin is probably non-specific. These results suggest that interactions between the 20 K region and the other peptides in the head are essential for actin-binding.  相似文献   

12.
Myosin VI has been implicated in various steps of organelle dynamics. However, the molecular mechanism by which this myosin contributes to membrane traffic is poorly understood. Here, we report that myosin VI is associated with a lysosome-related organelle, the melanosome. Using an actin-based motility assay and video microscopy, we observed that myosin VI does not contribute to melanosome movements. Myosin VI expression regulates instead the organization of actin networks in the cytoplasm. Using a cell-free assay, we showed that myosin VI recruited actin at the surface of isolated melanosomes. Myosin VI is involved in the endocytic-recycling pathway, and this pathway contributes to the transport of a melanogenic enzyme to maturing melanosomes. We showed that depletion of myosin VI accumulated a melanogenic enzyme in enlarged melanosomes and increased their melanin content. We confirmed the requirement of myosin VI to regulate melanosome biogenesis by analysing the morphology of melanosomes in choroid cells from of the Snell's waltzer mice that do not express myosin VI. Together, our results provide new evidence that myosin VI regulates the organization of actin dynamics at the surface of a specialized organelle and unravel a novel function of this myosin in regulating the biogenesis of this organelle.  相似文献   

13.
A one-to-one complex of a 45,000-mol-wt protein and actin was purified from unfertilized eggs of the sea urchin, Hemicentrotus pulcherrimus, by means of DNase l-Sepharose affinity and gel filtration column chromatographies. Effects of the complex on the polymerization of actin were studied by viscometry, spectrophotometry, and electron microscopy. The results are summarized as follows: (a) The initial rate of actin polymerization is inhibited at a very low molar ratio of the complex to actin. (b) Acceleration of the initial rate of polymerization occurs at a relatively high, but still substoichiometric, molar ratio of the complex to actin. (c) Annealing of F-actin fragments is inhibited by the complex. (d) The complex prevents actin filaments from depolymerizing. (e) Growth of the actin filament is inhibited at the barbed end. In all cases except b, a molar ratio of less than 1:100 of the 45,000-mol-wt protein-actin complex to actin is sufficient to produce these significant effects. These results indicate that the 45,000-mol-wt protein-actin complex from the sea urchin egg regulates the assembly of actin by binding to the barbed end (preferred end or rapidly growing end) of the actin filament. The 45,000-mol-wt protein-actin complex can thus be categorized as a capping protein.  相似文献   

14.
15.
Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV∆ defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7–Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.  相似文献   

16.
Actomyosin was extracted from smooth muscle of molluscan abalone with 0.1 M PPit pH 6.4. Myosin was separated from the actomyosin by centrifugation at 100,000 X g in the presence of 5 mM ATP and 10 mM MgCl2. Myosin in the supernatant was further purified by gel filtration on a Sepharose 4B column. Paramyosin contamination of the actomyosin preparation interfered with the isolation of myosin and complete removal of actin and paramyosin from the myosin has not been accomplished. The myosin appeared to consist of a single f-chain and a single g-chain, as examined by SDS-disc electrophoresis in 8 or 13.7% acrylamide gel. The ATPase [EC 3.6.1.3] activity of this myosin in 0.5 M KCL at neutral pH and at 0 degrees was rather unstable and decreased by 10-20% per day. The effects of rho-chloromercuribenzoate and EDTA on the ATPase activity were similar to those observed with other smooth muscle myosin but the dependence upon pH or KCL concentration was different.  相似文献   

17.
18.
The polymerization of G-actin is prevented by concentrations of gadolinium (GdIII) that exceed the ATP present. Since the susceptibility of G-actin to enzymatic proteolysis is slightly decreased upon addition of GdIII, and the digestibility of F-actin is markedly increased with the same treatment, it appears that actin undergoes GdIII-induced conformational changes. The altered states of actin formed inhibit the GdIII-ATPase activity of myosin, but in all cases, the effect of GdIII on actin is reversed by removal of the trivalent ion with ATP. The reversible changes in conformation induced by GdIII create a state of actin which has properties unlike those of G-actin, F-monomer or F-actin.  相似文献   

19.
The hydrolysis of ATP accompanying actin polymerization destabilizes the filament, controls actin assembly dynamics in motile processes, and allows the specific binding of regulatory proteins to ATP- or ADP-actin. However, the relationship between the structural changes linked to ATP hydrolysis and the functional properties of actin is not understood. Labeling of actin Cys374 by tetramethylrhodamine (TMR) has been reported to make actin non-polymerizable and enabled the crystal structures of ADP-actin and 5'-adenylyl beta,gamma-imidodiphosphate-actin to be solved. TMR-actin has also been used to solve the structure of actin in complex with the formin homology 2 domain of mammalian Dia1. To understand how the covalent modification of actin by TMR may affect the structural changes linked to ATP hydrolysis and to evaluate the functional relevance of crystal structures of TMR-actin in complex with actin-binding proteins, we have analyzed the assembly properties of TMR-actin and its interaction with regulatory proteins. We show that TMR-actin polymerized in very short filaments that were destabilized by ATP hydrolysis. The critical concentrations for assembly of TMR-actin in ATP and ADP were only an order of magnitude higher than those for unlabeled actin. The functional interactions of actin with capping proteins, formin, actin-depolymerizing factor/cofilin, and the VCA-Arp2/3 filament branching machinery were profoundly altered by TMR labeling. The data suggest that TMR labeling hinders the intramolecular movements of actin that allow its specific adaptative recognition by regulatory proteins and that determine its function in the ATP- or ADP-bound state.  相似文献   

20.
Isotonic extracts of the soluble cytoplasmic proteins of sea urchin eggs, containing sufficient EGTA to reduce the calcium concentration to low levels, form a dense gel on warming to 35-40 degrees C. Although this procedure is similar to that used to polymerize tubulin from mammalian brain, sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows this gel to have actin as a major component and to contain no tubulin. If such extracts are dialyzed against dilute salt solution, they no longer respond to warming, but gelation will occur if they are supplemented with 1 mM ATP and 0.020 M KCl before heating. Gelation is not temperature reversible, but the gelled material can be dissolved in 0.6-1 M KCl and these solutions contain F- actin filaments. These filaments slowly aggregate to microscopic, birefringent fibrils when 1 mM ATP is added to the solution, and this procedure provides a simple method for preparing purified actin. the supernate remaining after actin removal contains the other two components of the gel, proteins of approximately 58,000 and 220,000 mol wt. These two proteins plus actin recombine to form the original gel material when the ionic strength is reduced. This reaction is reversible at 0 degrees C, and no heating is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号