首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study was carried out in order to elucidate the metabolic pathway from 1 alpha,25-(OH)2D3 to 1 alpha,25-(OH)2D3-26,23-lactone. For that purpose, we stereospecifically synthesized the vitamin D3 derivatives 1 alpha,23(S),25-(OH)3D3, 1 alpha,23(S),25(R),26-tetrahydroxyvitamin D3, and 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-lactol. The in vitro metabolism of these compounds was examined in kidney homogenates and intestinal mucosa homogenates from 1 alpha,25-(OH)2D3-supplemented chicks. The naturally occurring 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was produced (in increasing amounts) from 1 alpha,25-(OH)2D3, 1 alpha,25(R),26-(OH)3D3, 1 alpha,23(S),25-(OH),D3, 1 alpha,23(S),25(R),26-(OH)4D3, and 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol. These results indicated that there are two possible metabolic pathways from 1 alpha,25-(OH)2D3 to 1 alpha,23(S),25(R),26-(OH)4D3: the major one is by way of 1 alpha,23(S),25-(OH)3D3 and the minor one is by way of 1 alpha,25(R),26-(OH)3D3. 1 alpha,23(S),25(R),26-Tetrahydroxyvitamin D3 is further metabolized to 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone via 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactol. In the course of our studies, a new biosynthetic vitamin D3 metabolite was isolated in pure form. This metabolite was identified as 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol by UV spectrophotometry and mass spectrometry. Furthermore, we establish in this report that the lactonization of 1 alpha,23,25,26-(OH)4D3 and 1 alpha,25-(OH)2D3-26,23-lactol occurs in a stereo-retained and stereo-selective fashion.  相似文献   

2.
Three new in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3 were isolated from the serum of dogs given large doses (two doses of 1.5 mg/dog) of 1 alpha,25-dihydroxyvitamin D3. The metabolites were isolated and purified by methanol-chloroform extraction and a series of chromatographic procedures. By cochromatography on a high-performance liquid chromatograph, ultraviolet absorption spectrophotometry, mass spectrometry, Fourier-transform infrared spectrophotometry, and specific chemical reactions, the metabolites were identified as 1 alpha,25-dihydroxy-24- oxovitamin D3, 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, and 1 alpha,24(S),25-trihydroxyvitamin D3. According to these procedures, the total amounts of the isolated metabolites were as follows: 1 alpha,25-dihydroxyvitamin D3, 23.6 micrograms; 1 alpha,25-dihydroxy-24- oxovitamin D3, 1.8 micrograms; 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 9.2 micrograms; 1 alpha,24(R),25-trihydroxyvitamin D3, 15.4 micrograms; 1 alpha,24(S),25-trihydroxyvitamin D3, 1.0 microgram. With recovery corrections, the serum levels of each metabolite were approximately 49 ng/mL for 1 alpha,25-dihydroxyvitamin D3, 3.7 ng/mL for 1 alpha,25-dihydroxy-24- oxovitamin D3, 19 ng/mL for 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 32 ng/mL for 1 alpha,24(R),25-trihydroxyvitamin D3, and 2.1 ng/mL for 1 alpha,24(S),25-trihydroxyvitamin D3.  相似文献   

3.
Four possible diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were chemically synthesized and compared with the natural metabolite by high-pressure liquid chromatography. The four synthetic diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone could be separated into three peaks by high-pressure liquid chromatography. The naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum and in vitro incubation of chick kidney homogenates comigrated with 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. The four diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were tested against naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone to determine their relative competition in the 1 alpha,25-dihydroxyvitamin D3-specific cytosol receptor binding assay for 1 alpha,25-dihydroxyvitamin D3. 23(S)25(S)-1 alpha,25-Dihydroxyvitamin D3-26,23-lactone was the best competitor followed by 23(R)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone and 23(R)25(S)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone, and 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was the poorest competitor. Natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum had almost the same binding affinity as that of 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. These data unequivocally demonstrate that the stereochemistry of the natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone has the 23(S) and 25(R) configuration.  相似文献   

4.
The metabolism of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] in the rat has been studied under both in vivo and in vitro conditions. A time course study of the appearance of 1α,25-dihydroxyvitamin D3-26,23-lactone in the plasma following intravenous or oral administration of 1α,25(OH)2D3 suggests that the small intestine may take part in production of the 1α,25(OH)2D3-26,23-lactone. In an in vitro study using a homogenate of rat small intestinal mucosa, 1α,25(OH)2D3 undergoes further metabolism to give more polar metabolite(s) which comigrate with authentic 1α,24,25-trihydroxyvitamin D3 [1α,24,25(OH)3D3] on Sephadex LH-20 column chromatography. The metabolic profile obtained after high-pressure liquid chromatography reveals two major classes of metabolites, designated Peaks X and Y. Peak X is an unidentified metabolite of 1α,25(OH)2D3. Peak Y is chromatographically identical with 1α,25-dihydroxyvitamin D3-26,23-lactone which has been recently isolated from the plasma of rats and dogs as a major metabolite produced in vivo from either 1α,25(OH)2D3 or 1α-hydroxyvitamin D3 (N. Ohnuma, K. Bannai, H. Yamaguchi, Y. Hashimoto, and A. W. Norman, 1980, Arch. Biochem. Biophys.204, 387). The enzyme activity which produces metabolites X and Y in the rat intestinal homogenates is induced in vitamin D-replete rats by pretreatment of the animals with intravenous 1.25 μg/kg doses of 1α,25-dihydroxyvitamin D3, 6 to 8 h previously.  相似文献   

5.
1 alpha,25-Dihydroxyvitamin D3-26,23-lactone [1 alpha,25(OH)2D3-26,23-lactone] was compared to 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] in terms of their stimulation, in vivo, of intestinal calcium transport and mobilization of calcium from bone in the rat (the two classic vitamin D-mediated responses), and their relative binding to the chick intestinal receptor for 1 alpha,25(OH)2D3, 1 alpha,25-(OH)2D3-26,23-lactone was found to be only one-thirtieth as active as 1 alpha,25-(OH)2D3 in the stimulation of intestinal calcium transport and was found to mediate a significant reduction in the steady-state serum calcium levels. Associated with the reduction in serum calcium was a significant increase in urinary calcium excretion for 24 h after the administration of the steroid. Prior administration of 1 alpha,25(OH)2D3-26,23-lactone partially blocked the actions of a subsequently administered dose of 1 alpha,25(OH)2D3 in increasing serum calcium levels, but did not affect the action of 1 alpha,25(OH)2D3 in stimulating intestinal calcium transport. The binding affinity of 1 alpha,25(OH)2D3-26,23-lactone to the chick intestinal cytosol receptor protein was observed to be 670 times lower than that of 1,25-(OH)2D3 which indicates that perturbation of the 25-hydroxylated side chain by formation of the 26,23-lactone causes a significant reduction in ligand affinity for the receptor.  相似文献   

6.
Vitamin D compounds added to the culture medium induce differentiation of human myeloid leukemia cells (HL-60 cells) by binding to a specific cytosol receptor protein. This system provides a biologically relevant and technically simple assay to examine the relationship between molecular structure and biological activity of vitamin D compounds. Using this culture system, the biological activity of 24,24-F2-1 alpha,25(OH)2D3 and 1 alpha,25(OH)2D3-26,23-lactone was assayed. 24,24-F2-1 alpha,25(OH)2D3 was four to seven times more potent than 1 alpha,25(OH)2D3 in inducing phagocytosis and C3 rosette formation of HL-60 cells, though both compounds bound equally well to the cytosol receptor, suggesting that the defuorination at the 24-carbon position may stimulate membrane permeability of the compound. 1 alpha,25(OH)2D3-26,23-lactone, on the other hand, was only 1/200th as active as 1 alpha,25(OH)2D3. The binding affinity of the lactone for the cytosol receptor was identical with that of 1 alpha (OH)D3, suggesting that the lactone formation between the 26 and 23 positions masks the function of the 25-hydroxyl group. The binding affinity of vitamin D3 derivatives to the specific cytosol receptor of HL-60 cells was well correlated with that of intestinal cytosol protein specifically bound to 1 alpha,25(OH)2D3.  相似文献   

7.
A new vitamin D metabolite was isolated in pure form from the blood of rats given oral doses of 50 μg/kg of 1α-hydroxyvitamin D3. The isolation involved methanol-chloroform extraction and four successive column chromatographic procedures. A tentative structure of the metabolite is proposed on the basis of its column chromatographic behavior via mass spectrometry, ultraviolet absorption spectrophotometry, and as 1α,3β,25-trihydroxy-9,10 (19)-cholestatrieno-26,23-lactone. The trivial name 1α,25-dihydroxyvitamin D3-26,23-lactone is suggested for this compound.  相似文献   

8.
Ishizuka S  Miura D  Ozono K  Saito M  Eguchi H  Chokki M  Norman AW 《Steroids》2001,66(3-5):227-237
We synthesized various analogues of 1alpha,25-(OH)(2)D(3)-26,23-lactone and examined the effects of them on HL-60 cell differentiation using the evaluation system of the genomic action of 1alpha,25-(OH)(2)D(3). We found that (23S)- and (23R)-25-dehydro-1alpha-OH-D(3)-26,23-lactone (TEI-9647 and TEI-9648) strongly bound to the VDR, but did not induce HL-60 cell differentiation. Intriguingly, TEI-9647 and TEI-9648 did inhibit that induced by 1alpha,25-(OH)(2)D(3), whereas they did not suppress that caused by retinoic acid or TPA. On the contrary, the similar 25-dehydrated 24-dehydro analogues, TEI-D1807 and TEI-D1808, weakly but significantly induced HL-60 cell differentiation, never showing inhibitory effect on HL-60 cell differentiation induced by 1alpha,25-(OH)(2)D(3). In other experiments, TEI-9647 and TEI-9648 markedly suppressed 25-OH-D(3)-24-hydroxylase gene expression induced by 1alpha,25-(OH)(2)D(3) in HL-60 cells. TEI-9647 also inhibited the heterodimer formation between VDR and RXRalpha, and the VDR interaction with co-activator SRC-1 according to the results obtained from the mammalian two-hybrid system in Saos-2 cells. Taking all these results into consideration, we reached a manifest conclusion that TEI-9647 and TEI-9648 are the specific and first antagonists of 1alpha,25-(OH)(2)D(3) action, specifically VDR-VDRE mediated genomic action.  相似文献   

9.
Structural similarities between 25S,26-dihydroxyvitamin D3 and 25-hydroxyvitamin D3-26,23-lactone and their concomitant multifold increase in the plasma of animals treated with pharmacological doses of vitamin D3 suggest a precursor-product relationship. However, a single dose of 25S,26-[3H]dihydroxyvitamin D3 given to rats treated chronically with pharmacological amounts of vitamin D3 did not result in detectable plasma 25-[3H]hydroxyvitamin D3-26,23-lactone. Multiple doses of synthetic 25S,26-dihydroxyvitamin D3 given to vitamin D3-deficient rats treated chronically with pharmacological amounts of vitamin D2 also did not result in detectable plasma 25-hydroxyvitamin D3-26,23-lactone. Furthermore, homogenates prepared from vitamin d-deficient chickens, dosed with 1,25-dihydroxyvitamin D3, converted 25-[3H]hydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. But these same homogenates did not convert 25S,26-[3H]dihydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. These data indicate that 25,26-dihydroxyvitamin D3 is not an intermediate in 25-hydroxyvitamin D326, 23-lactone formation.  相似文献   

10.
Chemically synthesized 1 alpha-hydroxy-25-fluorovitamin D3 was compared to 1,25-dihydroxyvitamin D3 for potency in the chick intestinal cytosol-binding protein assay, induction of intestinal calcium transport, mobilization of calcium from bone, and epiphyseal plate calcification in the rat. The 25-fluorinated analogue causes 50% displacement of 1,25-dihydroxy[23,24-3H]D3 at 1.8 X 10(-8) M in the competitive protein-binding assay, whereas only 5.6 X 10(-11) M of unlabeled 1,25-dihydroxyvitamin D3 is needed for equal competition. This 315-fold difference between and 1 alpha-hydroxy-25-fluorovitamin D3 indicates that the fluoro analogue is about equipotent with 1 alpha-hydroxyvitamin D3 in the protein-binding assay. However, 1 alpha-hydroxy-25-fluorovitamin D3 is 1/50 as active as 1,25-dihydroxyvitamin D3 in vivo in the stimulation of intestinal calcium transport and bone calcium mobilization in vitamin D deficient rats on a low-calcium diet. Likewise, 1 alpha-hydroxy-25-fluorovitamin D3 is about 40 times less active than 1,25-dihydroxyvitamin D3 in inducing endochondrial calcification in rachitic rats. No selective actions of 1alpha-hydroxy-25-fluorovitamin D3 were noted. Since the 25 position of the analogue is blocked by a fluorine atom, it appears that 25-hydroxylation of 1 alpha-hydroxylated vitamin D compounds in vivo is not an obligatory requirement for appreciable vitamin D activity.  相似文献   

11.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

12.
13.
A metabolite of vitamin D has been isolated in pure form from incubation of 25-hydroxyvitamin D3 with embryonic chick calvarial cells that had been grown on Cytodex 1 microcarrier beads. The isolation involved dichloromethane extraction of the cells and incubation medium, followed by Sephadex LH-20 column chromatography and high-performance liquid chromatography of the extract. The metabolite was identified as 1 alpha,25-dihydroxyvitamin D3 by means of ultraviolet absorption spectroscopy, mass spectrometry, and sensitivity to oxidation by periodate. This metabolite was not produced by cell-free medium or by cells from embryonic chick liver, skin, or heart. In conclusion, (1) kidney cells are not unique in having 25-hydroxyvitamin D3:1 alpha-hydroxylase activity as previously believed and (2) vitamin D target tissues such as the skeleton may play a direct role in mediating the metabolism of 25-hydroxyvitamin D3 to 1 alpha,25-dihydroxyvitamin D3, a vitamin D metabolite active at those sites.  相似文献   

14.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

15.
[23 (S), 25 (R)]-1 alpha,25-Dihydroxyvitamin D3-26,23-lactone [( 23 (S),25 (R)]-1 alpha,25-(OH) 2D3-26,23-lactone) increased dose-dependently alkaline phosphatase activity in osteoblastic cells, clone MC3T3-E1, in medium containing 0.1% bovine serum albumin. The maximal stimulated enzyme activity per mg protein was 1.6-fold over that of control cultures at 250 pg/ml. The metabolite also increased collagen synthesis in a dose-related fashion. On the other hand, [23 (S),25 (R)]-1 alpha,25-(OH)2D3-26,23-lactone decreased slightly but significantly 45Ca mobilization, and blocked the resorptive action of 1 alpha,25-dihydroxyvitamin D3 but not that of parathyroid hormone, in mouse calvaria in organ culture. These results indicate that [23 (S),25 (R)]-1 alpha, 25-(OH)2D3-26,23-lactone stimulates the differentiation of osteoblasts and inhibits bone resorption in vitro.  相似文献   

16.
Biological activity of 24-epi-1 alpha,25-dihydroxyvitamin D-2 (24-epi-1,25(OH)2D2) and 1 alpha,25-dihydroxyvitamin D-7 (1,25(OH)2D7), the 22,23-dihydro derivative of the former compound, was investigated. Both of the vitamin D derivatives stimulated intestinal calcium transport and calcium mobilization from bones in rats; however, the effect was about 50% of that of 1 alpha,25-dihydroxyvitamin D-3 (1,25(OH)2D3). On the other hand, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 inducement of HL-60 human leukemia cell differentiation was comparable to that of 1,25(OH)2D3. Accordingly, the differentiation-inducing activity of 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 was much greater than their ability to stimulate calcium metabolism. In contrast to 1,25(OH)2D3, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 exerted little hypercalcemic activity in mice. These results suggest that both vitamin D derivatives will be useful as anti-tumor agents.  相似文献   

17.
Hybridoma cell lines secreting antibodies for vitamin D3 metabolites have been generated by fusing splenocytes from BALB/c mice immunized with 3 beta-glutaryl-25-hydroxyvitamin D3 conjugated to bovine serum albumin (3 beta-glu-25-OH-D3-BSA) and Sp2/O-Ag14 myeloma cells. Purification of monoclonal antibodies from culture media or ascites fluids was accomplished by procedures including affinity chromatography on Protein A-Sepharose 4B. Each monoclonal antibody was analyzed as to its affinity and specificity by equilibrium dialysis and an enzyme immunoassay (EIA) based on a double antibody system. It was demonstrated that clone 1C2-60 produced an antibody highly specific to 1 alpha,25-dihydroxyvitamin D3 (calcitriol), and the clone 2B3-66 antibody was reactive to 25-hydroxyvitamin D3 and similar structural compounds. These two monoclonal antibodies produced by 1C2-60 and 2B3-66 were determined to belong to the IgG2a class, and their affinity constants (Ka) with 3 beta-glu-25-OH-D3 were demonstrated to be 3.6 X 10(9) M-1 and 2.9 X 10(9) M-1, respectively, at 4 degrees C. The characteristics of these monoclonal antibodies were compared with those of conventional antibodies raised in mice and rabbits. Finally, by using monoclonal antibody 1C2-60, a sensitive EIA has been developed that can detect 10 pg of calcitriol.  相似文献   

18.
Regulatory activities of 2 beta-(3-hydroxypropoxy)-1 alpha, 25-dihydroxyvitamin D3 [ED-71], a novel synthetic vitamin D3 derivative, on calcium metabolism were investigated. The compound behaved similar to 1 alpha, 25-dihydroxyvitamin D3 [1,25(OH)2D3] in the ex vivo intestinal calcium transport using rat everted gut sac and the in vivo bone mobilization using vitamin D-deficient rats. By means of Raisz's assay method, 45Ca releasing activity of ED-71 was not greater than that of 1,25(OH)2D3. The time course curve of ED-71 in plasma made a mild round shape compared with that of 1,25(OH)2D3 and the former's plasma concentration remained increased longer than the latter's. The therapeutic effect of ED-71 for the animal models with osteoporosis seemed to be better than that of 1,25(OH)2D3. The results suggest that ED-71 may be a promising drug for therapy of osteoporosis.  相似文献   

19.
Hapten derivatives of 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3) were synthesized using the Wittig-Horner approach. Both haptens bearing a carboxylic group at the side chain that can be linked to a protein for raising antibodies of potential utility for the determination of 25-hydroxyvitamin D(3), 1alpha,25-dihydroxyvitamin D(3) and 1alpha-hydroxylated vitamin D(3) analogues.  相似文献   

20.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号