首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydration mechanism of bovine serum albumin (BSA) is studied, and we analyze (de)hydration spectra displayed previously. We first determine the three elementary (de)hydration spectra on which all these (de)hydration spectra can be decomposed. They correspond to three different hydration mechanisms for the protein, which we define after a quantitative analysis performed in a second step. The first mechanism, which involves ionization of carboxylic COOH groups, occurs at low hydration levels and rapidly reaches a plateau when the hygroscopy is increased. It is a mechanism that involves a single H(2)O molecule and consequently requires somewhat severe steric conditions. The second mechanism occurs at all hydration levels and, because it involves more H(2)O molecules, requires less severe steric conditions. It consists of the simultaneous hydration of one amide N--H group and one carbonyl-amide C=O group by four H(2)O molecules and one carboxyl COO(-) group by eight H(2)O molecules. The third mechanism is simpler and consists of the introduction of H(2)O molecules into the hydrogen-bond network of the hydrated protein. It becomes important at a high hydration level, when the presence of an appreciable number of H(2)O molecules makes this hydrogen-bond network well developed. This analysis also shows that 80 H(2)O molecules remain embedded in one dried protein made of 604 peptide units. They are held by hydrogen bonds established by N--H groups and at the same time they establish two hydrogen bonds on two carbonyl-amide C=O groups. The proportion of free N--H groups can be determined together with that of carbonyl-amide C=O groups accepting no hydrogen bonds and that of carbonyl-amide C=O groups accepting two hydrogen bonds. The proportion of N--H groups establishing one hydrogen bond directly on a carbonyl-amide C=O group is 65%, which is the proportion of peptide units found in alpha helices in BSA.  相似文献   

2.
This article is the first one in a series dedicated to the study of hyaluronan as observed by IR spectrometry. The goal is to determine its hydration mechanism and the structural changes this mechanism implies. Hyaluronan is a natural polysaccharide that is widely used in biomedical applications and cosmetics. Its macroscopic properties are significantly dependent on its degree of hydration. In this article we record the IR spectrum of a several micron thick dried film and deduce that four or five residual H(2)O molecules remain around each disaccharide repeat unit in the dried film. We then compare the spectra of sodium hyaluronan and its acid form to assign vibrational bands linked to the carboxylate group. We proceed with a qualitative analysis of the spectral changes induced by changes of temperature and hygroscopicity, two independent parameters that act by modifying the hydrogen bond network of the sample. This enables us to assign most of the vibrational bands of the hydrophilic groups and to distinguish the bands that are due to these hydrophilic groups when they are or are not hydrogen bonded. It constitutes a prerequisite for the quantitative analysis of hydration spectra that will be described in the following articles of this series.  相似文献   

3.
Lu Y  Deng G  Miao F  Li Z 《Carbohydrate research》2003,338(24):2913-2919
The single-crystal structure of neodymium chloride-ribopyranose pentahydrate, NdCl3.C5H10O5.5H2O was determined to have Mr=490.80, a=9.138(11), b=8.830(10), c=9.811(11) A, beta=94.087(18) degrees, V=789.7(16) A3, P2(1), Z=2, mu=0.71073 A and R=0.0198 for 2075 observed reflections. The ligand of the title complex was observed in a disordered state and two molecular configurations of NdCl3.C5H10O5.5H2O were found in the single crystal as a pair of isomers. Both ligand moieties of the two molecules are ribopyranose forms, providing three hydroxyl groups in ax-eq-ax orientation for coordination. One ligand of the pair of isomers is beta-D-ribopyranose in the 1C4 conformation, and the other is alpha-D-ribopyranose in the 4C1 conformation. The Nd3+ ion is nine-coordinated with five Nd-O bonds from water molecules, three Nd-O bonds from hydroxyl groups of the ribopyranose and one Nd-Cl bond from chloride ion. The hydroxyl groups, water molecules, chloride ions form an extensive hydrogen-bond network. The IR spectral C-C,O-H,C-O and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accordance with those of X-ray spectroscopy.  相似文献   

4.
We recorded a series of spectra of sodium hyaluronan (HA) films that were in equilibrium with their surrounding humid atmosphere. The hygrometry of this atmosphere extended from 0 to 0.97% relative humidity. We performed a quantitative analysis of the corresponding series of hydration spectra that are the difference spectra of the film at a defined hygrometry minus the spectrum of the dried film (hygrometry = 0). The principle of this analysis is to use this series of hydration spectra to define a limited number (four) of "elementary hydration spectra" over which we can decompose all hydration spectra with good accuracy. This decomposition, combined with the measurements of the numbers of H(2)O molecules at the origin in these elementary hydration spectra of the three characteristic vibrational bands of H(2)O, allowed us to calculate the hydration number under different relative humidity conditions. This number compares well with that determined by thermogravimetry. Furthermore, the decomposition defines for each hygrometry value which chemical mechanisms represented by elementary hydration spectra are active. This analysis is pursued by determining for the elementary hydration spectra the number of hydrogen bonds established by each of the four alcohol groups found in each disaccharide repeat unit before performing the same analysis for amide and carboxylate groups. These results are later utilized to discuss the structure of HA at various stages of hydration.  相似文献   

5.
Lu Y  Deng G  Miao F  Li Z 《Carbohydrate research》2004,339(10):1689-1696
Single crystals of LaCl3.C5H10O5.5H2O (1) and CeCl3.C5H10O5.5H2O (2) were obtained from ethanol-water solutions and their structures determined by X-ray. The two complexes are isomorphous. Two configurations of complex 1 or complex 2, as a pair of isomers, were found in each single crystal in a disordered state. The ligand of one of the isomer is alpha-D-ribopyranose in the 4C1 conformation, the ligand of the other is beta-D-ribopyranose in the 1C4 conformation. For complex 1, the alpha:beta anomeric ratio is 51:49, and for complex 2, the ratio is 52:48. Both ligands of the two isomers provide three hydroxyl groups in ax-eq-ax orientation for coordination. The Ln3+ (Ln = La or Ce) ion is nine-coordinated with five Ln-O bonds from water molecules, three Ln-O bonds from hydroxyl groups of the D-ribopyranose, and one Ln-Cl bond from chloride ion. The hydroxyl groups, water molecules, and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations were observed to be shifted in both the two complexes and the IR results are in accord with those of X-ray diffraction.  相似文献   

6.
The poly(dG-dC) helical duplex forms a modified, B-family structure (B*) at very high hydration and a normal B structure at slightly lower hydration. The B* structure is slightly different in sugar-phosphate and base-stacking conformations than the B structure. Increasing the hydration or decreasing the NaCl content stabilizes B* with respect to B. Poly(dG-dC) forms the Z structure at low NaCl contents when the hydration is sufficiently reduced. At moderate NaCl content, the B to Z transition is sharp and cooperative for hydration with D2O. Hydration with H2O broadens the transition which occurs at lower hydration. This suggests that hydrogen bonding is stronger in the Z structure and helps stabilize Z over B. IR spectra may be used to quantitatively estimate the fractions of B and Z structures present in a sample. Some new indicator bands are described.  相似文献   

7.
Lu Y  Guo J 《Carbohydrate research》2006,341(5):683-687
A single-crystal of PrCl3.D-ribose.5H2O was obtained from a methanol-water solution and its structure determined by X-ray crystallography. Two configurations of the complex, as a pair of isomers, were found in the single-crystal in a disordered state, which differs from that reported previously. The ligand of one of the complexes is alpha-D-ribopyranose in the 4C1 conformation, and the ligand of the other is beta-D-ribopyranose in the 1C4 conformation. The alpha:beta anomeric ratio is 54:46. Both ligands of the two isomers provide three hydroxyl groups in an axial-equatorial-axial orientation for coordination. The Pr3+ ion is nine-coordinated, with five Pr-O bonds from water molecules, three Pr-O bonds from the hydroxyl groups of the D-ribopyranose and one Pr-Cl bond from chloride ion. The hydroxyl groups, water molecules, and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations are shifted in the complex, compared to those in d-ribose, and the IR results are in accord with those obtained from the X-ray diffraction study.  相似文献   

8.
We present time-resolved room-temperature infrared difference spectra for the bacteriorhodopsin (bR) photocycle at 8 cm (-1) spectral and 5 micros temporal resolution, from 4000 to 800 cm (-1). An in situ hydration method allowed for a controlled and stable sample hydration (92% relative humidity), largely improving the quality of the data without affecting the functionality of bR. Experiments in both H 2 (16)O and H 2 (18)O were conducted to assign bands to internal water molecules. Room-temperature difference spectra of the L and M intermediates minus the bR ground state (L-BR and M-BR, respectively) were comprehensively compared with their low-temperature counterparts. The room-temperature M-BR spectrum was almost identical to that obtained at 230 K, except for a continuum band. The continuum band contains water vibrations from this spectral comparison between H 2 (16)O and H 2 (18)O, and no continuum band at 230 K suggests that the protein/solvent dynamics are insufficient for deprotonation of the water cluster. On the other hand, an intense positive broadband in the low-temperature L-BR spectrum (170 K) assigned to the formation of a water cavity in the cytoplasmic domain is absent at room temperature. This water cavity, proposed to be an essential feature for the formation of L, seems now to be a low-temperature artifact caused by restricted protein dynamics at 170 K. The observed differences between low- and room-temperature FTIR spectra are further discussed in light of previously reported dynamic transitions in bR. Finally, we show that the kinetics of the transient heat relaxation of bR after photoexcitation proceeds as a thermal diffusion process, uncorrelated with the photocycle itself.  相似文献   

9.
Pevsner A  Diem M 《Biopolymers》2003,72(4):282-289
The IR absorption spectra of protein, DNA, RNA, and phospholipid films as a function of the water content are reported. We find that the hydration of protein films affects the peak intensity of amide I and amide II bands and the shape of the amide III band. For nucleic acids, the symmetric (nu(S) PO(2) (-)) and antisymmetric (nu(AS) PO(2) (-)) stretching vibrations of the phosphate linkage are the most affected by hydration, because both intensity changes and frequency shifts are observed. The spectra of phospholipid films are also sensitive to hydration, and they exhibit changes in the peak intensities and frequencies of both nu(S) PO(2) (-) and nu(AS) PO(2) (-) vibrations. We interpret the spectral differences between water saturated and dried films both in terms of structural changes and the change in the local dielectric in the vicinity of the polar and solvent exposed groups. In addition, we observe that the most significant change in the absorption intensity, frequency, and shape of the water sensitive vibrations occurs at high hydration levels. The principal component analysis of hydration results and the kinetics of water removal from sample films are also discussed. In addition, protein spectra acquired using film and KBr pellet sampling techniques are compared.  相似文献   

10.
The resonance Raman (RR) spectra of FMN, FAD, FAD in D2O, and 7,8-dimethyl-1, 10-ethyleneisoalloxazinium perchlorate have been obtained by employing KI as a collisional fluorescence-quenching agent. The spectra are very similar to those obtained recently by using the CARS technique to eliminate fluorescence. Spectra have also been obtained for several species in which flavin is known to fluoresce only weakly. We report RR spectra of protonated FMN, FMN semiquinone cation, the general fatty acyl-CoA dehydrogenase, and two "charge-transfer" complexes of fatty acyl-CoA dehydrogenase. Tentative assignment of several vibrational bands can be made on the basis of our flavin spectra. RR spectra of fatty acyl-CoA and its complexes are consistent with the previous hypothesis that visible spectral shifts observed during formation of acetoacetyl-CoA and crotonyl-CoA complexes of fatty acyl-CoA dehydrogenase result from charge-transfer interactions in which the ground state is essentially nonbonding as opposed to interactions in which complete electron transfer occurs to form FAD semiquinone. The only significant change in the RR spectrum of FAD on binding to enzyme occurs in the 1250-cm-1 region of the spectrum, a region associated with delta N--H of N-3. The position of this band in fatty acyl-CoA dehydrogenase and the other flavoproteins studied to date is discussed in terms of hydrogen bonding between flavin and protein.  相似文献   

11.
12.
The dynamics, hydration, and ion-binding features of two duplexes, the A(r(CG)(12)) and the B(d(CG)(12)), in a neutralizing aqueous environment with 0.25 M added KCl have been investigated by molecular dynamics (MD) simulations. The regular repeats of the same C=G base-pair motif have been exploited as a statistical alternative to long MD simulations in order to extend the sampling of the conformational space. The trajectories demonstrate the larger flexibility of DNA compared to RNA helices. This flexibility results in less well defined hydration patterns around the DNA than around the RNA backbone atoms. Yet, 22 hydration sites are clearly characterized around both nucleic acid structures. With additional results from MD simulations, the following hydration scale for C=G pairs can be deduced: A-DNA相似文献   

13.
Structural transitions of poly(rC)-Ka+ in humid films with different water content were studied by infrared spectroscopy and piezogravimetry. From analysis of the hydration isotherms and the dependence of spectral parameters (frequencies and intensities of the main bands) on n the hydration sites of the polynucleotide were determined (C2O, O4', N4H2, N1, PO2-, C2'OH). It was found that the transition of the polynucleotide from the unordered state to a double-stranded complex poly(rC+).poly(rC) occurs in the interval of n from 2 to 8. The value n = 8 corresponds to the total hydration of poly(rC). A model of hydration of poly(rC+).poly(rC) based on the experimental results and known X-ray parameters of this double helix complex is proposed. The most important feature of the model is the presence of single water bridges between PO2(-)-groups in the first hydration shell of each chain and triple water bridges between O4', N4H2 and C2'OH- atomic groups of opposite chains. The experimental results obtained and the proposed structure of hydration environment of poly(rC+).poly(rC) suggest that the stabilization of this complex is stabilized by the intra- and inter-chain water bridges and hydrogen bonds between pairs of cytosine bases.  相似文献   

14.
D D Schlereth  W M?ntele 《Biochemistry》1992,31(33):7494-7502
Using suitable surface-modified electrodes, we have developed an electrochemical system which allows a reversible heterogeneous electron transfer at high (approximately 5 mM) protein concentrations between the electrode and myoglobin or hemoglobin in an optically transparent thin-layer electrochemical (OTTLE) cell. With this cell, which is transparent from 190 to 10,000 nm, we have been able to obtain electrochemically-induced Fourier-transform infrared (FTIR) difference spectra of both proteins. Clean protein difference spectra between the redox states were obtained because of the absence of redox mediators in the protein solution. The reduced-minus-oxidized difference spectra are characteristic for each protein and arise from redox-sensitive heme modes as well as from polypeptide backbone and amino acid side chain conformational changes concomitant with the redox transition. The amplitudes of the difference bands, however, are small as compared to the total amide I absorbance, and correspond to approximately 1% (4%) of the reduced-minus-oxidized difference absorbance in the Soret region of myoglobin (hemoglobin) and to less than 0.1% of the total amide I absorbance. Some of the bands in the 1560-1490-cm-1 spectral regions could be assigned to side-chain vibrational modes of aromatic amino acids. In the conformationally sensitive spectral region between 1680 and 1630 cm-1, bands could be attributed to peptide C = O modes because of their small (2-5 cm-1) shift in 2H2O. A similar assignment could be achieved for amide II modes because of their strong shift in 2H2O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Yang L  Wang Z  Zhao Y  Tian W  Xu Y  Weng S  Wu J 《Carbohydrate research》2000,329(4):847-853
The title compound, PrCl3.C6H12O6.9 H2O crystallized in the monoclinic space group P2(1)/n with cell dimensions a = 15.8293(3), b = 8.67750(10), c = 16.2292(3) A, beta = 107.0788(8) degrees, V = 2130.92(6) A3 and Z = 4. Each Pr ion is coordinated to nine oxygen atoms, two from the inositol and seven from water molecules, with Pr-O distances from 2.4729 to 2.6899 A; the other two water molecules are hydrogen-bonded. No direct contacts exist between Pr and Cl. There is an extensive network of hydrogen bonds formed by hydroxyl groups, water molecules, and chloride ions. The IR spectra of Pr-, Nd-, and Sm-inositol complexes are similar, which shows that the three metal ions have the same coordination mode. The IR results are consistent with the crystal structure.  相似文献   

16.
Mezzetti A  Leibl W  Breton J  Nabedryk E 《FEBS letters》2003,537(1-3):161-165
The photoreduction of the quinone (Q) pool in the photosynthetic membrane of the purple bacterium Rhodobacter sphaeroides was investigated by steady-state and time-resolved Fourier transform infrared difference spectroscopy. The results are consistent with the existence of a homogeneous Q pool inside the chromatophore membrane, with a size of around 20 Q molecules per reaction center. IR marker bands for the quinone/quinol (Q/QH(2)) redox couple were recognized. QH(2) bands are identified at 1491, 1470, 1433 and 1388-1375 cm(-1). The 1491 cm(-1) band, which is sensitive to (1)H/(2)H exchange, is assigned to a C-C ring mode coupled to a C-OH mode. A feature at approximately 1743/1720 cm(-1) is tentatively related to a perturbation of the carbonyl modes of phospholipid head groups induced by QH(2) formation. Complex conformational changes of the protein in the amide I and II spectral ranges are also apparent during reduction and reoxidation of the Q pool.  相似文献   

17.
Fourier Transform Infrared Spectra of triple stranded polynucleotides containing homopurine dA or rA and homopyrimidine dT or rU strands have been obtained in H2O and D2O solutions as well as in hydrated films at various relative humidities. The spectra are interpreted by comparison with those of double stranded helixes with identical base and sugar composition. The study of the spectral domain corresponding to in-plane double bond stretching vibrations of the bases shows that whatever the initial duplex characterized by a different IR spectrum (A family form poly rA.poly rU, heternomous form poly rA.poly dT, B family form poly dA.poly dT), the triplexes present a similar IR spectrum reflecting similar base interactions. A particular attention is devoted to the 950-800 cm-1 region which contains marker bands of the sugar conformation in the nucleic acids. In solution the existence of only N (C3'endo-A family form) type of sugar pucker is detected in poly rU.poly rA.poly rU and poly dt.poly rA.poly rU. On the contrary absorption bands characteristic of both N (C3'endo-A family form) and S (C2'endo-B family form) type sugars are detected for poly rU.poly rA.poly dT, poly rU.poly dA.poly dT and poly dT.poly rA.poly dT. Finally mainly S (C2'endo-B family form) type sugars are observed in poly dT.poly dA.poly dT.  相似文献   

18.
Proteins which have been exposed to the hydroxyl radical (.OH) or to the combination of .OH plus the superoxide anion radical and oxygen (.OH + O2- + O2) exhibit altered primary structure and increased proteolytic susceptibility. The present work reveals that alterations to primary structure result in gross distortions of secondary and tertiary structure. Denaturation/increased hydrophobicity of bovine serum albumin (BSA) by .OH, or by .OH + O2- + O2 was maximal at a radical/BSA molar ratio of 24 (all .OH or 50% .OH + 50% O2-). BSA exposed to .OH also underwent progressive covalent cross-linking to form dimers, trimers, and tetramers, partially due to the formation of intermolecular bityrosine. In contrast, .OH + O2- + O2 caused spontaneous BSA fragmentation. Fragmentation of BSA produced new carbonyl groups with no apparent increase in free amino groups. Fragmentation may involve reaction of (.OH-induced) alpha-carbon radicals with O2 to form peroxyl radicals which decompose to fragment the polypeptide chain at the alpha-carbon, rather than at peptide bonds. BSA fragments induced by .OH + O2- + O2 exhibited molecular weights of 7,000-60,000 following electrophoresis under denaturing conditions, but could be visualized as hydrophobic aggregates in nondenaturing gels (confirmed with [3H]BSA following treatment with urea or acid). Combinations of various chemical radical scavengers (mannitol, urate, t-butyl alcohol, isopropyl alcohol) and gases (N2O, O2, N2) revealed that .OH is the primary species responsible for alteration of BSA secondary and tertiary structure. Oxygen, and O2- serve only to modify the outcome of .OH reaction. Furthermore, direct studies of O2- + O2 (in the absence of .OH) revealed no measurable changes in BSA structure. The process of denaturation/increased hydrophobicity was found to precede either covalent cross-linking (by .OH) or fragmentation (by .OH + O2- + O2). Denaturation was half-maximal at a radical/BSA molar ratio of 9.6, whereas half-maximal aggregation or fragmentation occurred at a ratio of 19.4. Denaturation/hydrophobicity may hold important clues for the mechanism(s) by which oxygen radicals can increase proteolytic susceptibility.  相似文献   

19.
The photochemical reaction of (eta5-C5H5)Mo(CO)3I with maleimide in the presence of diisopropylamine yielded complex (eta5-C5H5)Mo(CO)3(eta1-N-maleimidato) 4 in 52% yield. The single-crystal X-ray structure of this complex was determined and shows unusual interactions between oxygen atoms of the maleimidato ligand and carbon atoms of the cis-CO ligands. The tungsten analogue of 4, (eta5-C5H5)W(CO)3(eta1-N-maleimidato) 5, was synthesized in 37% yield by the reaction of (eta5-C5H5)W(CO)3I with the thallium(I) salt of maleimide. Complexes 4 and 5 reacted with cysteine ethyl ester and glutathione to afford products of the addition of the sulfhydryl group to the ethylenic bond of the maleimidato ligand. The reaction of 4 and 5 with glutathione proceeded faster than the reaction of the analogous complex (eta5-C5H5)Fe(CO)2(eta1-N-maleimidato) (3). However, all these complexes react with glutathione more slowly than N-ethylmaleimide. Complexes 4 and 5 were used for labeling of bovine serum albumin (BSA), enriched in thiol groups by reaction with Traut's reagent. Reaction of thiolated BSA containing 7.4 SH groups with 4 and 5 gave bioconjugates bearing 6.9 and 6.4 metallocarbonyl moieties, respectively. Under the same conditions, reaction with 3 afforded a BSA conjugate containing 7.6 metallocarbonyl moieties. Labeling was presumed to be site-specific, as the number of metallocarbonyl entities matched very well with the initial number of SH groups measured for the thiolated BSA sample. IR spectra of BSA labeled with 4 and 5 show intense nu(C[triple bond]O)) bands (2042 and 1948 cm(-1) in the latter case), enabling sensitive detection of the bioconjugates in biological samples. Complexes 4 and 5 (especially the latter) should be of interest as heavy atom phasing reagents for protein X-ray crystallography.  相似文献   

20.
B Wolf  S Hanlon 《Biochemistry》1975,14(8):1661-1670
The data and approach reported in paper I (Hanlon et al., 1975, preceding paper) have been used to calculate the fractional changes in secondary structure of calf thymus deoxyribonucleic acid which occur in aqueous solutions as a function of the concentration of NaCl, KCl, LiCl, CsCl, and NH4Cl. There is a continuous loss in the "B" character of the nucleic acid with concomitant production of the C and, in some instances, an A form, as well, as the salt concentration increases. Sedimentation velocity studies suggest that there is an accompanying change in the hydrodynamic characteristics of the DNA molecules, as well. Utilizing the existing hydration data in the literature (Hearst and Vinograd, 1961a,b; Hearst, 1965; Tunis and Hearst, 1968a; Cohen and Eisenberg, 1968; Falk et al., 1962, 1963a,b), we have found that a gradual loss of "B" character and a decrease in the frictional coefficient of DNA occur as the net hydration of DNA is reduced from the fully hydrated from (60-80 mol of H2O/mol of nucleotide) to values of ca. 12-14 mol of H2O/mol of nucleotide. Below that value, a more precipitous decrease in these properties occurs. Extrapolation of the linear relationship observed between the fractional B content and the net hydration in the latter regions yield values of ca. 18 mol of H2O/mol of nucleotide at 100% B and ca. 4 mol of H2O/mol of nucleotide at 0% B (i.e., 100% C or C + A) for the alkali metal salts of DNA. The ammonium salt retains somewhat more H2O in the C and A forms (ca. 7). These results together with the hydration site assignments of Falk et al. (1962, 1963a,b) are interpreted in terms of a hydration model for DNA in aqueous solution in which an intact primary hydration shell of ca. 18 mol of H2O/mol of nucleotide is required for the maintenance of the "B" conformation. Removal of all but those water molecules solvating the phosphate groups results in the conversion to the C forms, predominantly, with a small amount of A structure formed as well in some salts. The accompanying changes in the sedimentation coefficients suggest that the DNA molecule assumes a more compact and/or flexible form under these conditions in which it is mainly in the C and A structures. The combination of these two events which ensue upon dehydration create a polymeric structure which can be more easily packaged in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号