首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The supraoptic (SON) and paraventricular (PVN) magnocellular nuclei of the hypothalamus undergo reversible anatomical remodeling under conditions of intense secretion of neurohypophysial hormones, such as lactation and chronic dehydration. This morphological plasticity is characterized by a pronounced reduction in astrocytic coverage of neurons, which results in an increased number and extent of directly juxtaposed somatic and dendritic surfaces. As a consequence, astrocyte-mediated clearance of glutamate from the extracellular space is altered, which causes an increased concentration and range of action of the excitatory amino acid in the extracellular space. This leads to a reduction of synaptic efficacy at excitatory and inhibitory inputs through the activation of presynaptic metabotropic glutamate receptors. By contrast, the action of glio transmitters released from astrocytes and acting on adjacent magnocellular neurons is limited during such anatomical remodeling. This includes glia derived ATP mediating potentiation of glutamatergic transmission, a process compromised by the neuronal-glial reorganization.Together, these studies on hypothalamic magnocellular nuclei provide new insights on the contribution of glial cells on neuronal activity.  相似文献   

2.
The desert rodents Psammomys obesus and Gerbillus tarabuli live under extreme conditions and overcome food and water shortage by modes of food and fluid intake specific to each species. Using immunohistochemistry and electron microscopy, we found that the hypothalamic magnocellular nuclei, and in particular, their vasopressinergic component, is highly and similarly developed in Psammomys and Gerbillus. In comparison to other rodents, the hypothalamus in both species contains more magnocellular VP neurons that, together with oxytocin neurons, accumulate in distinct and extensive nuclei. As in dehydrated rodents, many magnocellular neurons contained both neuropeptides. A striking feature of the hypothalamic magnocellular system of Psammomys and Gerbillus was its display of ultrastructural properties related to heightened neurosecretion, namely, a significant reduction in glial coverage of neuronal somata and dendrites in the hypothalamic nuclei. There were many neuronal elements whose surfaces were directly juxtaposed and shared the same synapses. Their magnocellular nuclei also showed a high level of sialylated isoform of the Neural Cell Adhesion Molecule (PSA-NCAM) that underlies their capacity for neuronal and glial plasticity. These species thus offer striking models of structural neuronal and glial plasticity linked to natural conditions of heightened neurosecretion.  相似文献   

3.
1. The adult hypothalamoneurohypophysial system (HNS) undergoes reversible morphological changes in response to physiological stimulation.2. In the hypothalamus, stimulation of neurohormone secretion results in reducedastrocytic coverage of oxytocinergic somata and dendrites so that their surfaces becomedirectly juxtaposed. Concurrently, there is a significant increase in the number of GABAergic, glutamatergic, and noradrenergic synapses impinging on the neurons.3. In the neurohypophysis, stimulation induces retraction of pituicyte processes fromthe perivascular area and enlargement and multiplication of neurosecretory terminals.4. These neuronal-glial and synaptic changes are reversible with cessation of stimulation, thus rendering the HNS an excellent model to study physiologically linked structuralneuronal plasticity in the adult CNS.5. We still do not know the cellular mechanisms and factors underlying such plasticity.Recent studies indicate, however, that the adult HNS expresses molecular characteristicsnormally associated with histogenesis and/or tissue reorganization in developing or regenerating neural systems. They include expression of cell adhesion molecules such as the highlysialylated isoform of the neural cell adhesion molecule, PSA-NCAM, and the glycoproteins, F3 and tenascin-C.6. The expression of PSA-NCAM and tenascin-C does not show striking differencesin terms of age, sex or physiological condition but that of F3 varies considerably withneurohypophysial stimulation.7. We postulate that such molecular features allow magnocellular neurons and theirglia to undergo neuronal-glial and synaptic plasticity throughout life, provided the properstimulus intervenes.8. Thus, in the hypothalamic nuclei, centrally released oxytocin acting in synergy with steroids can induce such plasticity, while adrenaline, acting through -adrenergic mechanisms, does so in the neurohypophysis.  相似文献   

4.
Abstract

Neuronal excitability in the trigeminal sensory nuclei (TSN) changes after nerve transection. We examined the effects of chronic transection of the trigeminal nerve on the c-Fos-immunoreactivity in the TSN induced 2?h after 10?min of electrical stimulation of the trigeminal ganglion (TG) at C-fiber activating condition (1.0?mA, 5?ms, 5?Hz) in urethane-anesthetized rats. In the non-transected control rats, stimulation of the TG induced c-Fos-immunoreactive cells (c-Fos-IR cells) mostly in superficial layers (VcI/II) of the nucleus caudalis (Vc) in its full extent along the dorsomedial–ventrolateral axis, but modestly in the rostral TSN above the obex, the principal, oral, and interpolar nuclei. Three days, 1, 2, or 3 weeks after transection of the inferior alveolar (IAN), infraorbital, or masseteric nerves, the stimulation of the TG induced c-Fos-IR cells in the central terminal fields of the transected nerve in the rostral TSN and magnocellular zone of the Vc. However, the number of c-Fos-IR cells in the VcI/II decreased inside the central terminal fields of the transected nerve and increased outside the fields. These results indicate that transection of the trigeminal nerve increases the excitability of TSN neurons that receive inputs from injured mechanoreceptors and uninjured nociceptors, but decreases it from injured nociceptors. The altered c-Fos responses may imply mechanisms of neuropathic pain seen after nerve injury.  相似文献   

5.
Allergic bronchial asthma (BA) is characterized by chronic airway inflammation, development of airway hyperreactivity and recurrent reversible airway obstruction. T-helper 2 cells and their products have been shown to play an important role in this process. In contrast, the mechanisms by which immune cells interact with the cells residing in lung and airways, such as neurons, epithelial or smooth muscle cells, still remains uncertain. Sensory and motor neurons innervating the lung exhibit a great degree of functional plasticity in BA defined as 'neuronal plasticity'. These neurons control development of airway hyperresponsiveness and acute inflammatory responses, resulting in the concept of 'neurogenic inflammation'. Such quantitative and/or qualitative changes in neuronal functions are mediated to a great extent by a family of cytokines, the neurotrophins, which in turn are produced by activated immune cells, among others in BA. We have therefore developed the concept that neurotrophins such as nerve growth factor and brain-derived neurotrophic factor link pathogenic events in BA to dysfunctions of the immune and nervous system.  相似文献   

6.
We investigated the role of retrograde signals in the regulation of short-term synaptic depression and facilitation by characterizing the form of plasticity expressed at novel synapses on four giant interneurons in the cricket cercal sensory system. We induced the formation of novel synapses by transplanting a mesothoracic leg and its associated sensory neurons to the cricket terminal abdominal segment. Axons of ectopic leg sensory neurons regenerated and innervated the host terminal abdominal ganglion forming monosynaptic connections with the medial giant interneuron (MGI), lateral giant interneuron (LGI), and interneurons 7-1a and 9-2a. The plasticity expressed by these synapses was characterized by stimulating a sensory neuron with pairs of stimuli at various frequencies or with trains of 10 stimuli delivered at 100 Hz and measuring the change in excitatory postsynaptic potential amplitude recorded in the postsynaptic neuron. Novel synapses of a leg tactile hair on 7-1a depressed, as did control synapses of cercal sensory neurons on this interneuron. Novel synapses of leg campaniform sensilla (CS) sensory neurons on MGI, like MGI's control synapses, always facilitated. The form of plasticity expressed by novel synapses is thus consistent with that observed at control synapses. Leg CS synapses with 9-2a also facilitated; however, the plasticity expressed by these sensory neurons is dependent on the identity of the postsynaptic cell since the synapses these same sensory neurons formed with LGI always depressed. We conclude that the form of plasticity expressed at these synaptic connections is determined retrogradely by the postsynaptic cell. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 700–714, 1998  相似文献   

7.
The adult hypothalamo-neurohypophysial system (HNS) undergoes activity-dependent morphological plasticity which modifies astrocytic coverage of its oxytocinergic neurons and their synaptic inputs. Thus, during physiological conditions that enhance central and peripheral release of oxytocin (OT), adjacent somata and dendrites of OT neurons become extensively juxtaposed, without intervening astrocytic processes and receive an increased number of synapses. The morphological changes occur within a few hours and are reversible with termination of stimulation. The reduced astrocytic coverage has direct functional consequences since it modifies extracellular ionic homeostasis, synaptic transmission, and the size and geometry of the extracellular space. It also contributes indirectly to neuronal function by permitting formation of synapses on neuronal surfaces freed of astrocytic processes. Overall, such remodeling is expected to potentiate activated neuronal firing, especially in clusters of tightly packed neurons, an anatomical arrangement characterizing OT neurons. This plasticity connotes dynamic cell interactions that must bring into play cell surface and extracellular matrix adhesive proteins like those intervening in developing neuronal systems undergoing neuronal-glial and synaptogenic transformations. It is worth noting, therefore, that adult HNS neurons and glia continue to express such molecules, including polysialic acid (PSA)-enriched neural cell adhesion molecule (PSA-NCAM) and the glycoprotein, tenascin-C. PSA is a large, complex sugar on the extracellular domain of NCAM considered a negative regulator of adhesion; it occurs in large amounts on the surfaces of HNS neurons and astrocytes. Tenascin-C, on the other hand, possesses adhesive and repulsive properties; it is secreted by HNS astrocytes and occurs in extracellular spaces and on cell surfaces after interaction with appropriate ligands. These molecules have been considered permissive factors for morphological plasticity. However, because of their localization and inherent properties, they may also serve to modulate the extracellular environment and in consequence, synaptic and volume transmission in a system in which the extracellular compartment is constantly being modified.  相似文献   

8.
Mechanosensory neurons which innervate the siphon and have their cell bodies in the LE cluster of the abdominal ganglion ofAplysia have revealed many cellular and molecular processes that may play general roles in learning and memory. It was initially suggested that these cells are largely responsible for triggering the gill-withdrawal reflex evoked by weak siphon stimulation, and that most of this effect is mediated by their monosynaptic connections to gill motor neurons. This implied a simple link between plasticity at these synapses and modifications of the reflex during learning. We review more recent studies from several laboratories showing that the LE cells are not activated by very weak tactile stimuli that elicit the gill-withdrawal reflex, and that an unidentified population of siphon sensory neurons has lower mechanosensory thresholds and produces shorter latency responses. Furthermore, the direct connections between LE cells and gill motor neurons make a minor contribution when the reflex is elicited in pinned siphon preparations by light stimuli that weakly activate the LE cells. Because weak mechanical stimulation of the unrestrained siphon causes little or no LE cell activation, it is unlikely that, under natural conditions, sensitization or conditioning of reflex responses elicited by light siphon touch depends upon plasticity of LE cell synapses onto either motor or interneurons. The LE cells appear to function as nociceptors because they are tuned to noxious stimuli and, like mammalian nociceptors, show peripheral sensitization following nociceptive activation. This sensitization and the profound activity-dependent potentiation of LE synapses indicate that LE cell contributions to defensive reflexes should be largest during and after intense activation of the LE cells by noxious stimulation (with the LE cell plasticity contributing to long-lasting memory of peripheral injury). The LE sensory neurons offer special opportunities for direct tests of this and other hypotheses about specific mnemonic functions of fundamental mechanisms of neural plasticity.  相似文献   

9.

Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC’s ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.

  相似文献   

10.
D J Berlove  D T Piekut 《Peptides》1989,10(4):877-881
Following adrenalectomy, it has been demonstrated that parvocellular corticotropin-releasing factor-containing neurons in the paraventricular nucleus (PVN) of rat hypothalamus synthesize vasopressin. The present study examined whether putative vasopressin receptors are expressed in parallel with the appearance of vasopressin immunoreactivity in these parvocellular neurons. A vasopressin anti-idiotypic antibody which immunostains putative vasopressin receptors associated with magnocellular PVN neurons was utilized. Following adrenalectomy, antivasopressin immunostained neurons in parvocellular and magnocellular PVN, whereas the anti-idiotypic antibody immunostained magnocellular neurons only. We therefore conclude that the putative vasopressin receptor recognized by the anti-idiotype is not demonstrated in association with parvocellular vasopressin-producing neurons of the adrenalectomized rat.  相似文献   

11.
Glutamate is the predominant excitatory transmitter used by primary afferent synapses and intrinsic neurons in the spinal cord dorsal horn. Accordingly, ionotropic glutamate receptors mediate basal spinal transmission of sensory, including nociceptive, information that is relayed to supraspinal centers. However, it has become gradually more evident that these receptors are also crucially involved in short- and long-term plasticity of spinal nociceptive transmission, and that such plasticity have an important role in the pain hypersensitivity that may result from tissue or nerve injury. This review will cover recent findings on pre- and postsynaptic regulation of synaptic function by ionotropic glutamate receptors in the dorsal horn and how such mechanisms contribute to acute and chronic pain.  相似文献   

12.
At least three proteins present in CNS myelin, Nogo, MAG and OMgp are capable of causing growth cone collapse and inhibiting neurite outgrowth in vitro. Surprisingly, Nogo and OMgp are also strongly expressed by many neurons (including neocortical projection cells). Nogo expression is increased by some cells at the borders of CNS lesion sites and by cells in injured peripheral nerves, but Nogo and CNS myelin are largely absent from spinal cord injury sites, which are none the less strongly inhibitory to axonal regeneration. Nogo is found on growing axons during development, suggesting possible functions for neuronal Nogo in axon guidance. Although Nogo, MAG and OMgp lack sequence homologies, they all bind to the Nogo receptor (NgR), a GPI-linked cell surface molecule which, in turn, binds p75 to activate RhoA. NgR is strongly expressed by cerebral cortical neurons but many other neurons express NgR weakly or not at all. Some neurons, such as DRG cells, respond to Nogo and CNS myelin in vitro although they express little or no NgR in vivo which, with other data, indicates that other receptors are available for NgR ligands. NgR expression is unaffected by injury to the nervous system, and there is no clear correlation between NgR expression by neurons and lack of regenerative ability. In the injured spinal cord, interactions between NgR and its ligands are most likely to be important for limiting regeneration of corticospinal and some other descending tracts; other receptors may be more important for ascending tracts. Antibodies to Nogo, mainly the poorly-characterised IN-1 or its derivatives, have been shown to enhance recovery from partial transections of the spinal cord. They induce considerable plasticity from the axons of corticospinal neurons, including sprouting across the midline and, to a limited extent, regeneration around the lesion. Regeneration of corticospinal axons induced by Nogo antibodies has not yet been demonstrated after complete transections or contusion injuries of the spinal cord. It is not clear whether antibodies against Nogo act on oligodendrocytes/myelin or by binding to neuronal Nogo, or whether they can stimulate regeneration of ascending axons in the spinal cord, most of which express little or no NgR. Despite these uncertainties, however, NgR and its ligands offer important new targets for enhancing plasticity and regeneration in the nervous system.  相似文献   

13.
It has been known that magnocellular and parvocellular divisions of the pigeon nucleus isthmi exert excitatory and inhibitory actions on tectal cells, respectively. The present study shows that injection of N-methyl-D-aspartate into the parvocellular division results in an increase in responsive strength and extent of the inhibitory receptive fields, which expand into the excitatory receptive fields of tectal cells. This injection concurrently leads to a decrease in responsiveness and extent of the excitatory fields. On the other hand, injection of acetylcholine into the magnocellular division enhances visual responsiveness, although the excitatory field is not obviously changed in extent. Meanwhile, strength and extent of the inhibitory fields are decreased by acetylcholine. The excitatory and inhibitory fields are reduced in both strength and extent by magnocellular and parvocellular injection of lidocaine, respectively. It suggests that isthmic inputs from both parvocellular and magnocellular divisions converge onto the same tectal cells, and the magnocellular and parvocellular subnuclei can modulate excitatory and inhibitory receptive fields of tectal cells, respectively, with some interactions between both fields. Accepted: 1 March 2000  相似文献   

14.
Neuronal characteristics and location of the neurosecretory, magnocellular, fuchsin-paraldehyde-positive (FA+) system of the fowl are described at the light-microscopic level on serial semithin sections. Three nuclei make up this system, the nucleus supraopticus, n. magnocellularis interstitialis and n. paraventricularis. These nuclei display magnocellular neurons, not showing a parvocellular component. The neurons of the three nuclei showed a scattered pattern of distribution and a dense surrounding neuropil. Groups formed by magnocellular neurons were found in the three nuclei and groups formed by one magnocellular and a parvocellular neurons were only found in the n. magnocellularis interstitialis and in the n. paraventricularis. The presence of neurons in apposition to blood vessels was frequent in the magnocellular FA+ system of the domestic fowl.  相似文献   

15.
When you look into a mirror and move your eyes left to right, you will see that you cannot observe your own eye movements. This demonstrates the phenomenon of saccadic suppression: during saccadic eye movements, visual sensitivity is much reduced. Given that humans make more than 100,000 eye movements each day, it is clear why suppression is needed: without it, the motion on the retina would prevent us from seeing anything at all. Psychophysical data show that suppression is stimulus selective: it is strongest for the kind of stimuli that preferentially activate magnocellular thalamic neurons. This has led to the hypothesis that saccadic suppression selectively targets the magnocellular stream. We used fMRI to find brain areas with a stimulus-selective suppression of the BOLD signal that matches the psychophysical data. We found such a neural correlate of saccadic suppression in the dorsal stream (hMT+, V7) and in ventral area V4. These areas receive magnocellular input; hence our findings are consistent with the magnocellular hypothesis. The range of effects in our data and in single cell data, however, argues against a single thalamic mechanism that suppresses all cortical input. Instead, we speculate that saccadic suppression relies on multiple mechanisms operating in different cortical areas.  相似文献   

16.
Although neurons within the peripheral nervous system (PNS) have a remarkable ability to repair themselves after injury, neurons within the central nervous system (CNS) do not spontaneously regenerate. This problem has remained recalcitrant despite a century of research on the reaction of axons to injury. The balance between inhibitory cues present in the environment and the intrinsic growth capacity of the injured neuron determines the extent of axonal regeneration following injury. The cell body of an injured neuron must receive accurate and timely information about the site and extent of axonal damage in order to increase its intrinsic growth capacity and successfully regenerate. One of the mechanisms contributing to this process is retrograde transport of injury signals. For example, molecules activated at the injury site convey information to the cell body leading to the expression of regeneration-associated genes and increased growth capacity of the neuron. Here we discuss recent studies that have begun to dissect the injury-signaling pathways involved in stimulating the intrinsic growth capacity of injured neurons.  相似文献   

17.
During metamorphosis in holometabolous insects, the nervous system undergoes dramatic remodeling as it transitions from its larval to its adult form. Many neurons are generated through post-embryonic neurogenesis to have adult-specific roles, but perhaps more striking is the dramatic remodeling that occurs to transition neurons from functioning in the larval to the adult nervous system. These neurons exhibit a remarkable degree of plasticity during this transition; many subsets undergo programmed cell death, others remodel their axonal and dendritic arbors extensively, whereas others undergo trans-differentiation to alter their terminal differentiation gene expression profiles. Yet other neurons appear to be developmentally frozen in an immature state throughout larval life, to be awakened at metamorphosis by a process we term temporally-tuned differentiation. These multiple forms of remodeling arise from subtype-specific responses to a single metamorphic trigger, ecdysone. Here, we discuss recent progress in Drosophila melanogaster that is shedding light on how subtype-specific programs of neuronal remodeling are generated during metamorphosis.  相似文献   

18.
Neurite outgrowth is the basis for wiring during the development of the nervous system. Dl-3-n-butylphthalide (NBP) has been recognized as a promising treatment to improve behavioral, neurological and cognitive outcomes in ischemic stroke. However, little is known about the effect and mechanism of NBP on the neurite outgrowth. In this study, we used different methods to investigate the potential effects of NBP on the neurite extension and plasticity of immature and mature primary cortical neurons and explored the underlying mechanisms. Our results demonstrated that in immature and mature cortical neurons, NBP promoted the neurite length and intersections, increased neuritic arborization, elevated numbers of neurite branch and terminal points and improved neurite complexity and plasticity of neuronal development processes. Besides, our data revealed that NBP promoted neurite extension and branching partly by activating Shh signaling pathway via increasing Gap43 expression both in immature and mature primary cortical neurons. The present study provided new insights into the contribution of NBP in neuronal plasticity and unveiled a novel pathway to induce Gap43 expression in primary cortical neurons.  相似文献   

19.
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.  相似文献   

20.
The distribution of acetylcholinesterase (AChE) in the central vocal control nuclei of the zebra finch was studied using enzyme histochemistry. AChE fibres and cells are intensely labelled in the forebrain nucleus area X, strongly labelled in high vocal centre (HVC) perikarya, and moderately to lightly labelled in the somata and neuropil of vocal control nuclei robust nucleus of arcopallium (RA), medial magnocellular nucleus of the anterior nidopallium (MMAN) and lateral magnocellular nucleus of the anterior nidopallium (LMAN). The identified sites of cholinergic and/or cholinoceptive neurons are similar to the cholinergic presence in vocal control regions of other songbirds such as the song sparrow, starling and another genus of the zebra finch (Poephila guttata), and to a certain extent in parallel vocal control regions in vocalizing birds such as the budgerigar. AChE presence in the vocal control system suggests innervation by either afferent projecting cholinergic systems and/or local circuit cholinergic neurons. Co-occurrence with choline acetyltransferase (ChAT) indicates efferent cholinergic projections. The cholinergic presence in parts of the zebra finch vocal control system, such as the area X, that is also intricately wired with parts of the basal ganglia, the descending fibre tracts and brain stem nuclei could underlie this circuitry’s involvement in sensory processing and motor control of song.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号