首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.  相似文献   

2.
A total of 132 yeast strains were characterised from 4 sediment samples collected from small puddles in the vicinity of Midre Lovénbreen glacier, Arctic. Based on the D1/D2 domain sequence similarity, the isolates could be categorised into 6 groups. The nearest phylogenetic neighbour of groups I to VI were identified as Cryptococcus gastricus, Cryptococcus terricolus, Rhodotorula muscorum, Mrakia psychrophila, Mrakia gelida and Rhodotorula glacialis, respectively. Strains representative of the six groups were psychrophilic and salt tolerant but varied in their ability to produce cold-active extracellular enzymes such as lipase, protease, pectinase, cellulase and amylase. C18:1 (w9C) and C18:2 (w9,12C) were the only two fatty acids common to all the yeasts and branched and (or) unsaturated fatty acids increased in yeasts growing at 8°C compared to 22°C, probably as an adaptation to low temperature. The present study establishes that psychrophilic yeasts are predominant in Arctic and could be used as work horses to produce cold-active enzymes and poly unsaturated fatty acids which have been implicated in low temperature adaptation and also for their use in biotechnology.  相似文献   

3.
Microbial lipids have potential applications in energy, and food industry, because most of those lipids are triacylglycerol with long‐chain fatty‐acids that are comparable to conventional vegetable oils and can be obtained without arable land requirement. Rhodosporidium toruloides is a strictly aerobic strain, where oxygen plays a crucial role in growth, maintenance, and metabolite production, such as lipids and carotenoids. Dissolved oxygen concentration is one of the major factors affecting yeast physiological and biochemical characteristics. In this context, different approaches have been developed to increase available oxygen by the increasing the aeration and the addition of an oxygen‐vector. The growth of R. toruloides in 2‐L mechanical stirred tank reactor equipped with 1 or 2 porous spargers and a 70 C/N ratio, revealed a lipid content of 0.47 and 0.52 g/g and a lipidic productivity of 0.16 and 0.17 g/L day, respectively. The oxygen‐vector addition, increased the lipidic productivity for 0.20 g/L day and a lipid contend of 0.51 g of lipids/g of biomass. The combined approach, combining high aeration (AA), and 1% of n‐dodecane addition (DA), produced a significant improvement in the lipid accumulation (62%, w/w), when compared with the DA (51%, w/w) and the AA (52%, w/w) approaches. The increasing of lipids accumulation and smaller culture time are key factors for the success of scale‐up and profitability of a bioprocess.  相似文献   

4.
Volatile fatty acids (VFAs), acetic acid, acetates, and ethanol were used as carbon sources for the production of microbial lipids using Cryptococcus albidus in batch cultures. C. albidus utilized organic acids less than glucose in the production of lipids, resulting in a lipid yield coefficient on VFAs of 0.125 g/g. In a two-stage batch culture, the lipid content increased to 43.8% (w/w) when VFAs were used as the sole carbon source in the second stage, which was two times higher than that of the batch culture. Furthermore, a 192 h, two-stage fed-batch cultivation of C. albidus produced a dry cell weight, lipid concentration, and lipid content of 26.4 g/L, 14.5 g/L, and 55.1% (w/w), respectively. The fed-batch culture model used in this study featured pure VFA solutions, with intermittent feeding, under oxygen-enriched air supply conditions. This study investigated several alternative carbon sources to reduce the cost of microbial lipids production and proved the feasibility of using VFAs as the carbon source for the provision of a high lipid content and productivity.  相似文献   

5.
Summary Cryptococcus albidus var. albidus CBS 4517 was able to accumulate lipid under nitrogen-limited as well as excess-nitrogen conditions. The highest lipid-producting capacity was, however, observed in nitrogen-limited cultivations. In nitrogen-limited batch cultures, a lipid content of 34% (w/w) in biomass and a maximum specific lipid productivity of 37 mg lipid/g lipid-free biomass·h, was determined. The yield of lipid from glucose was about 0.15 g/g in nitrogen-limited and 0.11 g/g in excess-nitrogen cultures.In a nitrogen-limited fed-batch culture, 12.4 g/l lipid was produced at 90 h of cultivation and the cells contained 46.3% (w/w) lipid.Higher lipid yield and cellular lipid content were observed when inorganic nitrogen sources were used compared with organic. The choice of carbon source was seen to influence growth as well as lipid production and the highest yields of lipid were obtained when glucose, maltose or mannitol was used.A cultivation temperature of 20°C provided the highest lipid productivity compared to 25°C and 30°C. Addition of citrate to the growth medium was seen to have a stimulating effect on the specific lipid productivity.  相似文献   

6.
Candida rugosa BR-120, which cannot catabolize D(−)-β-hydroxyisobutyric acid (D-HIBA), was developed fromCandida rugosa IFO 0750 by UV irradiationC. rugosa BR-120 could not assimilate propionic acid as a carbon source. It is presumed thatC. rugosa BR-120 lacks HIBA dehydrogenase.C. rugosa BR-120 produced D-HIBA from isobutyric acid (IBA) with a high yield about 94%, whileC. rugosa IFO 0750 did it with about 42% on 5 days batch cultivation. On 5 days fed-batch cultivation,C. rugosa BR-120 andC. rugosa IFO 0750 produced 12.45 g/L and 5.22 g/L of D-HIBA, respectively. The degradation rate of D-HIBA by the resting cell ofC. rugosa IFO 0750 was 31.95%, butC. rugosa BR-120 was 3.08% on 2 days incubation.  相似文献   

7.
In an effort to understand the relationships between both the lipid content and 13C values of Collembola and their diet, isotopically labelled (C3 and C4) bakers yeasts were cultured and fed to two Collembolan species, Folsomia candida and Proisotoma minuta. The fatty acid composition of Collembola generally reflected that of the diet with the addition of the polyunsaturated components 18:2(n-6), 20:4(n-6) and 20:5(n-3), which appeared to be biosynthesised by the Collembola. Whilst ergosterol was the only sterol detected in the yeast diets, only cholesterol was detected in Collembola, and although the 13C values of diet and consumer sterols differed by >2, the 13C values indicated that cholesterol was derived entirely from dietary sterol. The bulk 13C values of Collembola were similar to those of the diets, but fatty acid 13C values did not necessarily reflect those of the dietary fatty acids, indicating significant de novo biosynthesis of fatty acids within Collembola. Switching the Collembola from C3 to C4 yeast enabled the determination of the rates of incorporation of dietary carbon into Collembolan lipids, and showed that half-lives of the incorporation of dietary carbon varied between 1.5 and 5.8 days at 20°C. Cholesterol exhibited the slowest rate of incorporation in both species, while bulk carbon in F. candida possessed an intermediate rate. These results demonstrate that an understanding of the sources of isotopic fractionation and the role of biochemistry in regulating the 13C values of individual compounds is important in the application of compound-specific isotopic analysis to the study of animal trophic activities.  相似文献   

8.
The lipid accumulation, fatty acid composition and γ-linolenic acid (GLA) production by 28 strains belonging to Mucorales were investigated. The lipid content varied from 5 to 30% on dry biomass and the percentage of γ-linolenic acid in total intracellular lipid was in a range from 2.5 to 15.4% (w/w). The best yield of γ-linolenic acid (expressed as mg GLA per 1 g biomass) was found for Mucor mucedo CCF – 1384 (28.4) and Cunninghamella echinulata CCF – 103 (25.1).  相似文献   

9.
Wild type cells of Hansenula mrakii IFO 0895 were highly resistant to the oxidative stress caused by lipid hydroperoxide. The resistance was due to a glutathione peroxidase (GSHPx) which was induced when the yeast was cultured in a medium containing lipid hydroperoxide (Inoue, Y. et al., Agric. Biol. Chem., 54, 3289–3293, 1990). In order to investigate the role of GSHPx, two mutants sensitive to lipid hydroperoxide were isolated. The phenotypes of the mutants were temperature-dependent; i.e., the mutants could grow at 28°C, but not at 35°C in the presence of lipid hydroperoxide. The mutants failed to induce the GSHPx at 35°C. However, the enzyme induced at 28°C and prepared from both mutants was stable after incubation at 37°C for 1 h.  相似文献   

10.
Bioconversion of Xylan to Triglycerides by Oil-Rich Yeasts   总被引:2,自引:1,他引:1       下载免费PDF全文
A series of lipid-accumulating yeasts was examined for their potential to saccharify xylan and accumulate triglyceride. Of the genera tested, including Candida, Cryptococcus, Lipomyces, Rhodosporidium, Rhodotorula, and Trichosporon, only Cryptococcus and Trichosporon isolates saccharified xylan. All of the strains could assimilate xylose and accumuate triglyceride under nitrogen-limiting conditions. Strains of Cryptococcus albidus were found to be especially useful for a one-step saccharification of xylan coupled to triglyceride synthesis. Cryptococcus terricolus, a strain constitutive for lipid accumulation, lacked extracellular xylanase, but did assimilate xylose and xylobiose and was able to continuously convert xylan to triglyceride if the culture medium was supplemented with xylanase.  相似文献   

11.
The ability of the formation of coenzyme A from pantothenic acid and cysteine in the presence of AMP or ATP was searched in yeasts and bacteria. The result of screening showed that the activity was found in several yeasts and the bacteria belonging to the genera Sarcina, Corynebacterium and Brevibacterium. Particularly, Brevibacterium ammoniagenes IFO 12071 (ATCC 6871) accumulated a large amount of coenzyme A.

Isolation of the reaction products, which were synthesized by Brevibacterium ammoniagenes IFO 12071, were carried out. The isolates were identified as coenzyme A, dephosphocoenzyme A and phosphopantothenic acid.

The possibility for the formation of coenzyme A in a larger amount from pantothenic acid and cysteine was investigated with baker’s yeast under the condition coupled with ATP-generating system.

Effect of various factors affecting the accumulation of coenzyme A was investigated. Among them, glucose concentration and inorganic phosphorus concentration were the most important factors for its accumulation. Coenzyme A was not accumulated without the phosphorylation of AMP to ATP. Several cationic surfactants stimulated the accumulation of coenzyme A.

The amount of coenzyme A accumulated reached about 200 μg per ml of the reaction mixture under the suitable reaction conditions employed.  相似文献   

12.
Summary Approximately 600 strains of various bacteria and actinomycetes were tested for their ability to hydroxylate o-acetyltoluidide (AT) at the 4'-position. Nocardia asteroides IFO 3384 and N. globerula IFO 13510 were selected as the best strains to catalyse the hydroxylation of AT. The product was isolated from culture] broth and identified as 4'-hydroxy-o-acetyltoluidide (4'-HAT). When AT was added during the course of cultivation of N. asteroides IFO 3384 and N. globerula IFO 13510, final concentrations of 1.0 mg/ml (a 23% molar conversion yield) and 1.5 mg/ml 4'-HAT (a 34% molar conversion yield) were obtained, respectively, from AT after 7 days cultivation. On the other hand, when resting cells of N. globerula IFO 13510 were used, the concentration of 4'-HAT attained was 4.4 mg/ml, a 69% molar conversion yield, after 4 days reaction. Offprint requests to: T. Nagasawa  相似文献   

13.
Lipid content, fatty acid composition, and feeding activity of the dominant Antarctic copepods, Calanoides acutus, Calanus propinquus, and Metridia gerlachei, were studied at a quasi-permanent station in the eastern Weddell Sea in December 2003. During 3 weeks of the spring phytoplankton development, total lipid levels of females and copepodite stages V (CVs) of C. acutus were almost doubled. Meanwhile, only a slight increase in total lipid content occurred in M. gerlachei, and no clear trend was observed in lipids of C. propinquus females. The pronounced increase of lipids in C. acutus was due to an accumulation of wax esters. The proportion of wax esters in the lipids of M. gerlachei was clearly lower, while triacylglycerols played a more important role. In C. propinquus, triacylglycerols were the only neutral lipid class. There were no pronounced changes in the feeding activity of M. gerlachei, whereas the feeding activity of C. acutus had rapidly increased with the development of the phytoplankton bloom in December, which explains its rapid lipid accumulation. The combination of gut content and fatty acid trophic marker analyses showed that C. acutus was feeding predominantly on diatoms. The typical diatom fatty acid marker, 16:1(n-7), slightly decreased and the tracer for flagellates, 18:4(n-3), increased in females and CVs of C. acutus. This shift indicates the time, when the significance of flagellates started to increase. The three copepod species exhibited different patterns of lipid accumulation in relation to their trophic niches and different duration of their active phases. The investigations filled a crucial data gap in the seasonal lipid dynamics of dominant calanoid copepods in the Weddell Sea in December and support earlier hypotheses on their energetic adaptations and life cycle strategies.  相似文献   

14.
The efficient enzymatic conversion of ketopantoyl lactone to d-( — )-pantoyl lactone was found to take place on incubation with washed cells of Candida parapsilosis IFO 0708 or Rhodotorula minuta IFO 0920. They showed high conversion activity when grown with 5% corn steep liquor and 5% glucose, sucrose, maltose or glycerol. Under suitable reaction conditions, the amounts of d-( — )- pantoyl lactone reached 49.5 g/1 (94.4% e.e.; molar yield, 99%) and 89.9 g/1 (80.4% e.e.\ molar yield, 99%) with cells of R. minuta and C. parapsilosis, respectively.  相似文献   

15.
The filamentous fungus, Fusarium solani, was grown in liquid and solid culture with glucose, glycerol, 1-hexanol and n-hexane. The partition coefficient with gaseous hexane (HPC) in the biomass was lower when grown in liquid medium with 1-hexanol (0.4) than with glycerol (0.8) or glucose (1) The HPC for surface growth were 0.2 for 1-hexanol, 0.5 for glycerol, 0.6 for glucose, and 0.2 for F. solani biomass obtained from a biofilter fed with gaseous n-hexane. These values show a 200-fold increase in n-hexane solubility when compared to water (HPC = 42). Lower HPC values can be partially explained by increased lipid accumulation with 1-hexanol, 10.5% (w/w) than with glycerol (8.5% w/w) or glucose (7.1% w/w). The diameter of the hyphae diminished from 3 μm to 2 μm when F. solani was grown on solid media with gaseous n-hexane thereby doubling the surface area for gaseous substrate exchange. The surface hydrophobicity of the mycelia increased consistently with more hydrophobic substrates and the contact angle of a drop of water on the mycelial mat was 113° when grown on n-hexane as compared to 75° with glucose. The fungus thus adapts to hydrophobic conditions and these changes may explain the higher uptake of gaseous hydrophobic substances by fungi in biofilters.  相似文献   

16.
We isolated several thermotolerant Acetobacter species of which MSU10 strain, identified as Acetobacter pasteurianus, could grow well on agar plates at 41°C, tolerate to 1.5% acetic acid or 4% ethanol at 39°C, similarly seen with A. pasteurianus SKU1108 previously isolated. The MSU10 strain showed higher acetic acid productivity in a medium containing 6% ethanol at 37°C than SKU1108 while SKU1108 strain could accumulate more acetic acid in a medium supplemented with 4–5% ethanol at the same temperature. The fermentation ability at 37°C of these thermotolerant strains was superior to that of mesophilic A. pasteurianus IFO3191 strain having weak growth and very delayed acetic acid production at 37°C even at 4% ethanol. Alcohol dehydrogenases (ADHs) were purified from MSU10, SKU1108, and IFO3191 strains, and their properties were compared related to the thermotolerance. ADH of the thermotolerant strains had a little higher optimal temperature and heat stability than that of mesophilic IFO3191. More critically, ADHs from MSU10 and SKU1108 strains exhibited a higher resistance to ethanol and acetic acid than IFO3191 enzyme at elevated temperature. Furthermore, in this study, the ADH genes were cloned, and the amino acid sequences of ADH subunit I, subunit II, and subunit III were compared. The difference in the amino acid residues could be seen, seemingly related to the thermotolerance, between MSU10 or SKU1108 ADH and IFO 3191 ADH.  相似文献   

17.
Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.  相似文献   

18.
The extracellular ice nuclei of Fusarium avenaceum IFO 7158 (FEIN) were stable at pH levels from 2 to 12 and tolerated temperatures up to 40°C. In an activity of the FEIN, proteins were important, however, saccharide and lipid which were proved to be a part of components of bacterial ice nuclei did not participate.  相似文献   

19.
The alcohol-fermenting yeast Torulaspora delbrueckii No. 3110 was less tolerant to high temperature than Saccharomyces cerevisiae IFO 0224 as measured by alcohol fermentation during mild agitation: at 40°C, ethanol production of the two yeasts was 0.8 and 5.2 wt% respectively. The No. 3110 cells had much unsaturated fatty acid (C18:2) and little ergosterol, which suggests that the low tolerance might be caused by high membrane fluidity. Two types of miconazole-resistant mutants were isolated and characterized. Strain M47 had less unsaturated fatty acid and was found to be more temperature tolerant than No. 3110. Strain M59 was defective in ergosterol synthesis and was less temperature tolerant than No. 3110. These results indicate the importance of membrane rigidity in temperature tolerance.

M59 aaccumulated much less trehalose than No. 3110 did. Addition of trehalose to the permeabilized cell system of M59 restored the temperature sensitivity, but not when the trehalase inhibitor deoxynojirimycin was also added, which suggests that the accumulation and metabolism of trehalose is important for the expression of temperature tolerance.  相似文献   

20.
Lipid accumulation has been investigated in numerous microalgal species to assess their potential with respect to biodiesel production. The present work determines the effect of nitrogen stress on physiological and ultrastructural changes in Isochrysis galbana U4. This study is unique in showing the correlations between growth, lipid production, pigmentation and ultrastructural changes in Isochrysis cells undergoing nitrogen starvation. The continuation of algal growth after the complete depletion of external nitrogen was shown to be supported by internal nitrogen stores, possibly in the pyrenoid. Cell growth ceased and lipid accumulation was initiated after the internal store of nitrogen had become exhausted. The depletion of intracellular nitrogen reservoirs to critical thresholds initiated the onset of the stationary phase, a decline in chlorophyll content and the initiation of lipid and carotenoid accumulation. The most notable ultrastructural changes, upon nitrogen stress, were the accumulation of plastidial and cytoplasmic lipid bodies and the dismantling of the chloroplast. The size of the pyrenoid when external nitrogen became depleted was found to decrease significantly, up to four‐fold. This was attributed to the remobilization of nitrogen from Rubisco. The level of expression of heterochromatin was found to increase when cells were nitrogen starved. This is thought to favor long‐term dormancy in this species because aging cells have been noted to recover rapidly when returned to conditions favorable for growth. The observations of this study are consistent with the hypothesis that the responses of Isochrysis cells to nitrogen starvation are regulated by the internal reserves of nitrogen, and the depletion of these reserves is an important trigger for lipid accumulation in this species. The findings of this study also indicate that Isochrysis galbana U4 is a promising candidate for biodiesel lipid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号