首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted molecular imaging with two-photon fluorescence microscopy (2PFM) is a powerful technique for chemical biology and, potentially, for noninvasive diagnosis and treatment of a number of diseases. The synthesis, photophysical studies, and bioimaging are reported for a versatile norbornene-based block copolymer multifunctional scaffold containing biocompatible (PEG), two-photon fluorescent dyes (fluorenyl) and targeting (cyclic-RGD peptide) moieties. The two bioconjugates, containing two different fluorenyl dyes and cRGDfK covalently attached to the polymer probe, formed a spherical micelle and self-assembled structure in water, for which size was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cell viability and 2PFM imaging of human epithelial U87MG cell lines that overexpress α(v)β(3) integrin was performed via incubation with the new probes, along with negative control studies using MCF-7 breast cancer cells and blocking experiments. 2PFM microscopy confirmed the high selectivity of the biocompatible probe in the integrin-rich area in the U87MF cells while blocking as well as negative control MCF-7 experiments confirmed the integrin-targeting ability of the new probes.  相似文献   

2.
Breast cancer is the most common female cancer. However, the known effective specific biomarkers for breast cancer are still scarce. Abnormal membrane proteins serve as ideal biomarkers for disease diagnoses, therapeutics and prognosis. Thus aptamers (single-stranded oligonucleotide molecules) with molecular recognition properties can be used as efficient tools to sort cells based on differences in cell surface architecture between normal and tumor cells. In this study, we aimed to screen specific aptamer against MCF-7 human breast cancer cells. Cell-SELEX process was performed to isolate aptamers from a combinatorial single-stranded nucleic acid library that selectively targeting surface proteins of MCF-7 cells in contrast with MCF-10A human mammary epithelial cells. The process was repeated until the pool was enriched for sequences that specifically recognizing MCF-7 cells in monitoring by flow cytometry. Subsequently, the enriched pool was cloned into bacteria, and positive clones were sequenced to obtain individual sequences. Representative sequences were chemically synthesized and evaluated their binding affinities to MCF-7 cells. As a result, an aptamer S1 was finally identified to have high binding affinity with equilibrium dissociation constant (Kd) value of 29.9 ± 6.0 nM. FAM-labeled aptamer S1 induced fluorescence shift in MCF-7 cells but not in MCF-10A human mammary epithelial cells, or MDA-MB-453 and MDA-MB-231 human breast cancer cells. Furthermore, result of cell imaging observed from laser confocal fluorescence microscope showed that MCF-7 cells exhibited stronger fluorescence signal resulted from Cy5-labeled aptamer S1 than MCF-10A cells. The above findings suggested that S1 may be a specificity and selectivity aptamer for MCF-7 cells and useful for the breast cancer detection and diagnosis.  相似文献   

3.
A near infrared fluorescence probe, lactose substituted zinc phthalocyanine, [2,9(10),16(17),23(24)-tetrakis((1-(β-d-lactose-2-yl)-1H-1,2,3-triazol-4-yl)methoxyl)phthalocyaninato] zinc(II), was synthesized via click reaction. Structural characterization and optical experiment demonstrated its excellent biocompatibility and fluorescence imaging ability. Near infrared fluorescence imaging in vivo for liver cancer, lung cancer and melanoma cancer with tumor bearing nude mice as models demonstrated that lactose substituted zinc phthalocyanine has specifically targeting ability to liver cancer while no targeting to lung cancer or melanoma, which implied its potential in liver cancer diagnosis as a near infrared optical probe.  相似文献   

4.
The effect of various GnRH analogues, and their conjugates on proliferation, clonogenicity and cell cycle phase distribution of MCF-7 and Ishikawa human cancer cell lines was studied. GnRH-III, a sea lamprey GnRH analogue reduced cell proliferation by 35% and clonogenicity by 55%. Structural modifications either decreased, or did not alter biological activity. Conjugation of GnRH analogues including MI-1544, MI-1892, and GnRH-III with poly(N-vinylpyrrolidone-co-maleic acid) (P) through a tetrapeptide spacer GFLG(X) substantially increased the inhibitory effect of the GnRH analogues. The conjugate P-X-GnRH-III induced significant accumulation of cells in the G2/M phase; from 8% to 15.6% at 24 h and 9.8% to 15% at 48 h. It was concluded that conjugation of various GnRH analogues substantially enhanced their antiproliferative activity, strongly reduced cell clonogenicity and retarded cell progression through the cell division cycle at the G2/M phase.  相似文献   

5.
6.
A quantum dot (QD)-bound hybridization probe was designed for detection of intracellular pre-miRNA using chitosan (CS)/poly(γ-glutamic acid) (γ-PGA) complex as a gene vector. The probe was prepared by assembling thiolated RNA to gold nanoparticle (Au NP) via Au-S bond and then binding 3′-end amine of the RNA to the carboxy group capped on quantum dot surface. The QD-RNA-Au NP probe was assembled on the vector by mixing with aqueous γ-PGA solution and then CS solution to construct a gene delivery system for highly effective cellular uptake and delivery. After the probe was released from CS/γ-PGA complex to the cytoplasm by electrostatic repulsion at intracellular pH, it hybridized with pre-miRNA precursor as target. The formed product was then cleaved by RNase III Dicer, leading to the separation of QDs from Au NPs and fluorescence emission of QDs, which could be detected by confocal microscopic imaging to monitor the amount of the intracellular pre-miRNA precursor. The in vitro assays revealed that the QD-RNA-Au NP was a robust, sensitive and selective probe for quantitative detection of target pre-miRNA. Using MDA-MB231 and MCF-7 breast cancer cells as models, the relative amount of pre-miRNA let-7a could be successfully compared. Since the amount of miRNA is related to the progress and prognosis of cancer, this strategy could be expected to hold promising application potential in medical research and clinical diagnostics.  相似文献   

7.
Ser/Thr protein phosphatase 5 (PP5) regulates several signaling-cascades that suppress growth and/or facilitate apoptosis in response to genomic stress. The expression of PP5 is responsive to hypoxia inducible factor-1 (HIF-1) and estrogen, which have both been linked to the progression of human breast cancer. Still, it is not clear if PP5 plays a role in the development of human cancer. Here, immunostaining of breast cancer tissue-microarrays (TMAs) revealed a positive correlation between PP5 over-expression and ductal carcinoma in situ (DCIS; P value 0.0028), invasive ductal carcinoma (IDC; P value 0.012) and IDC with metastases at the time of diagnosis (P value 0.0001). In a mouse xenograft model, the constitutive over-expression of PP5 was associated with an increase in the rate of tumor growth. In a MCF-7 cell culture model over-expression correlated with both an increase in the rate of proliferation and protection from cell death induced by oxidative stress, UVC-irradiation, adriamycin, and vinblastine. PP5 over-expression had no apparent effect on the sensitivity of MCF-7 cells to taxol or rapamycin. Western analysis of extracts from cells over-expressing PP5 revealed a decrease in the phosphorylation of known substrates for PP5. Together, these studies indicate that elevated levels of PP5 protein occur in human breast cancer and suggest that PP5 over-expression may aid tumor progression.  相似文献   

8.
As more becomes known about the expression profiles of normal and cancerous cells, it should become possible to design antisense-based imaging agents for the early detection of cancer noninvasively. In this report, we rationally designed and synthesized three antisense and one sense hybrid PNA (peptide nucleic acid) to the unr mRNA that is highly overexpressed in a breast cancer cell line (MCF-7). The conjugates had a four-lysine tail at the carboxy terminus for cell permeation and a DOTA (1,4,7,10-tetraazacyclododecane-N,N',N',N'-tetraacetic acid) chelating moiety at the amino terminal end for chelating (64)Cu for biodistribution and microPET imaging studies. Biodistribution of two (64)Cu-labeled conjugates with antisense and sense sequences (PNA50 and PNA50S) showed high uptake and long retention in kidney and low uptake and efficient clearance in blood and muscle in normal balb/c mice when administered intravenously or intraperitoneally. Intraperitoneal administration, however, gave a much slower release rate. MCF-7 tumors (100-320 mg) in CB-17 SCID mice were imaged with all four (64)Cu-labeled PNA conjugates by microPET, but the image contrast varied with different time points and different conjugates. Of the conjugates studied, (64)Cu-DOTA-Y-PNA50-K4 showed the best tumor image quality at all time points with a tumor/muscle ratio of 6.6 +/- 1.1 at 24 h postinjection, which is among the highest reported for radiolabeled oligonucleotides. Our work further strengthens the potential of antigene and antisense PNAs to be utilized as specific molecular probes for early detection of cancer and ultimately for patient specific radiotherapy.  相似文献   

9.
Prostate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy. Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer cells while low level of expression is observed in normal cells. In this study we describe the development of Glu-urea-Lys based PSMA-targeting conjugates with paclitaxel. A series of new PSMA targeting conjugates with paclitaxel was designed and synthesized. The cytotoxicity of conjugates was evaluated against prostate (LNCaP, 22Rv1 and PC-3) and non-prostate (Hek293T, VA13, A549 and MCF-7) cell lines. The most promising conjugate 21 was examined in vivo using 22Rv1 xenograft mice model. It demonstrated good efficiency comparable with paclitaxel, while reduced toxicity. 3D molecular docking study was also performed to understand underlying mechanism of binding and further optimization of the linker substructure and conjugates structure for improving the target affinity. These conjugates may be useful for further design of novel PSMA targeting delivery systems for PC.  相似文献   

10.
A dual-mode imaging probe for targeting cancer cells has been fabricated based on mesoporous silica coated gold nanorods (MS-GNRs) for the first time. In this probe, fluorescence and surface enhanced Raman scattering (SERS) signals can be generated independently by using different excitation wavelengths. To investigate the targeting performance of the probe, folic acid (FA) is conjugated on the outer surfaces of MS-GNRs as a targeting ligand and HeLa cells were used as model cancer cells because they overexpress folate receptors (FRs). The endocytosis mechanism was verified by competing experiments with free FA through both fluorescence images and SERS mappings. Moreover, the cytotoxicity of the probe was remarkably reduced in comparison with the GNRs without the silica shell as proved by the results of MTT assay. Compared with traditional imaging probes, this new type of nanoprobe has great potential for multiplexed imaging in living cells, which can be easily realized by using fluorescence and SERS signals.  相似文献   

11.
Some polyoxometalate (POM) clusters have demonstrated attractive anticancer properties. Unfortunately, their cytotoxicity upon normal cell is one of fateful side effects obstructing their further clinic application as inorganic drugs. In this communication, we report a new approach to create hybrid drugs potentially for cancer therapeutics. At first, the POM cluster bioconjugates were created by attaching the bioactive ligands on an amine grafted POM via simple amidation reaction. The cytotoxicity study with breast cancer cells (MCF-7 and MDA-MB-231) and non-cancerous breast epithelial cell (MCF-10A) showed that rationally selected ligands with cancer-cell targeting ability on POM–biomolecule conjugates can impart enhanced anti-tumor activity and selectivity, thus representing a new concept to develop novel POM–biomolecule hybrid drugs with the potential synergistic effect: increased bioactivity and lower side effect.  相似文献   

12.
A series of new estradiol linked pyrrolo[2,1-c][1,4]benzodiazepine (E(2)-PBD) conjugates (3a-f, 4a-f and 5a-f) with different linker architectures including a triazole moiety have been designed and synthesized. All the 18 compounds have been evaluated for their anticancer activity and it is observed that some of the compounds particularly 4c-e and 5c,d exhibited significant anticancer activity. The detailed biological aspects relating to the cell cycle effects and tubulin depolymerization activity have been examined with a view to understand the mechanism of action of these conjugates. Among all these conjugates, one of the compound 5c could be considered as the most effective compound particularly against MCF-7 breast cancer cell line.  相似文献   

13.
In vivo imaging of estrogen receptor (ER) densities in human breast cancer is a potential tool to stage disease, guide treatment protocols and follow-up on treatment outcome. Both positron emission tomography (PET) and fluorescence imaging have received ample attention to detect ligand-ER interaction. In this study we prepared BODIPY-estradiol conjugates using 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as fluorescent probe and estradiol derivatives as ligand and established their relative binding affinity (RBA) for the ERα. The synthesis of the conjugates involves attachment of a BODIPY moiety to the C17α-position of estradiol using Sonogashira or click reactions of iodo-BODIPY or aza-BODIPY with various 17α-ethynylestradiol (EE2) derivatives. The highest RBA for the ERα was observed with the EE2-BODIPY conjugate (7) featuring a linear eight carbon spacer chain. Cell uptake studies and in vivo imaging experiments in an ER-positive mouse tumor model are in progress.  相似文献   

14.
We present a highly selective approach for the targeting of inflammation with a multivalent polymeric probe. Dendritic polyglycerol was employed to synthesize a polyanionic macromolecular conjugate with a near-infrared fluorescent dye related to Indocyanine Green (ICG). On the basis of the dense assembly of sulfate groups which were generated from the polyol core, the resulting polyglycerol sulfate (molecular weight 12 kD with ~70 sulfate groups) targets factors of inflammation (IC(50) of 3-6 nM for inhibition of L-selectin binding) and is specifically transported into inflammatory cells. The in vivo accumulation studied by near-IR fluorescence imaging in an animal model of rheumatoid arthritis demonstrated fast and selective uptake which enabled the differentiation of diseased joints (score 1-3) with a 3.5-fold higher fluorescence level and a signal maximum at 60 min post injection. Localization in tissues using fluorescence histology showed that the conjugates are deposited in the inflammatory infiltrate in the synovial membrane, whereas nonsulfated control was not detected in association with disease. Hence, this type of polymeric imaging probe is an alternative to current bioconjugates and provides future options for targeted imaging and drug delivery.  相似文献   

15.
Water‐soluble quantum dots (QDs) for liver cancer diagnosis were prepared using QDs with oleylamine ligand coated with poly(aspartate)–graft–poly(ethylene glycol)–dodecylamine (PASP–Na–g–PEG–DDA). Dynamic light scattering and transmission electron microscopy imaging showed that the novel QDs have an ellipsoidal morphology with a size of ~ 45 nm which could be used for biomedical application. Furthermore, the PASP–Na–g–PEG–DDA was then modified with anti‐(vascular endothelial growth factor) (VEGF antibody), and a 1‐(4,5‐dimethylthiazol‐2‐yl)‐3,5‐diphenylformazan (MTT) assay showed that the novel anti‐VEGF‐targeting QDs in vitro had low toxicity. Confocal laser scanning microscopy observations revealed an intracellular (HepG2) distribution of the novel anti‐VEGF‐targeting QDs and the targeting efficiency of anti‐VEGF. These novel QDs could be used as a probe for liver cancer cell imaging because of anti‐VEGF targeting. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Gao X  Chen J  Chen J  Wu B  Chen H  Jiang X 《Bioconjugate chemistry》2008,19(11):2189-2195
Delivery of imaging agents to the brain is highly important for the diagnosis and treatment of central nervous system (CNS) diseases, as well as the elucidation of their pathophysiology. Quantum dots (QDs) provide a novel probe with unique physical, chemical, and optical properties, and become a promising tool for in vivo molecular and cellular imaging. However, their poor stability and low blood-brain barrier permeability severely limit their ability to enter into and act on their target sites in the CNS following parenteral administration. Here, we developed a QDs-based imaging platform for brain imaging by incorporating QDs into the core of poly(ethylene glycol)-poly(lactic acid) nanoparticles, which was then functionalized with wheat germ agglutinin and delivered into the brain via nasal application. The resulting nanoparticles, with high payload capacity, are water-soluble, stable, and showed excellent and safe brain targeting and imaging properties. With PEG functional terminal groups available on the nanoparticles surface, this nanoprobe allows for conjugation of various biological ligands, holding considerable potential for the development of specific imaging agents for various CNS diseases.  相似文献   

17.
Organometallic complexes conjugated to cell-penetrating peptides (CPPs) are promising systems for diagnostic imaging and therapeutic applications in human medicine. Recently, we reported on the synthesis of cymantrene(CpMn(CO)3)–CPP conjugates with biological activity on different cancer cell lines. However, the precise mechanism of cytotoxicity remained elusive in these studies. To investigate the role of the metal center and the linker between the CpM(CO)3 moiety and the peptide, a number of derivatives with manganese replaced by rhenium and the keto linker originally used substituted by a methylene group were prepared and fully characterized by 1H NMR spectroscopy, infrared spectroscopy, electrospray ionization mass spectrometry, and elemental analysis as well as X-ray structure determination. The organometal–peptide conjugates as well as carboxyfluorescein-labeled derivatives thereof were prepared by solid-phase peptide synthesis, purified by high-performance liquid chromatography, and analyzed by mass spectrometry. Fluorescence microscopy studies of MCF-7 human breast cancer cells revealed an efficient cellular uptake and pronounced nuclear localization of the bioconjugates with the methylene linker compared with systems with the keto group. In addition, the latter also showed a higher cytotoxicity. In contrast, the variation of the metal center from manganese to rhenium had a negligible effect. The structure–activity relationships determined in the present work will aid in the further tuning of the biological activity of organometal–peptide conjugates.  相似文献   

18.
19.
Modern polymer chemistry has led to the generation of a number of biocompatible synthetic polymers that have been increasingly studied as efficient carriers for drugs and imaging agents. Synthetic biocompatible polymers have been used to improve the efficacy of both small-molecular-weight therapeutics and imaging agents. Furthermore, multiple targeted anticancer agents and/or imaging reporters can be attached to a single polymer chain, allowing multifunctional and/or multimodality therapy and molecular imaging. Having both an anticancer drug and an imaging reporter in a single polymer chain allows noninvasive real-time visualization of the pharmacokinetics of polymeric drug delivery systems, which can uncover and explain the complicated mechanisms of in vivo drug delivery and their correlation to pharmacodynamics. This review examines the use of the synthetic biocompatible polymer poly(L-glutamic acid) (PG) as an efficient carrier of cancer therapeutics and imaging agents. This review summarizes and updates our recent research on the use of PG as a platform for drug delivery and molecular imaging, including recent clinical findings with respect to PG-paclitaxel (PG-TXL), the combination of PG-TXL with radiotherapy, mechanisms of action of PG-TXL, and noninvasive visualization of in vivo delivery of polymeric conjugates with contrast-enhanced magnetic resonance imaging, optical imaging, and multimodality imaging.  相似文献   

20.
We report here the in vivo diagnostic use of a peptide-dye conjugate consisting of a cyanine dye and the somatostatin analog octreotate as a contrast agent for optical tumor imaging. When used in whole-body in vivo imaging of mouse xenografts, indotricarbocyanine-octreotate accumulated in tumor tissue. Tumor fluorescence rapidly increased and was more than threefold higher than that of normal tissue from 3 to 24 h after application. The targeting conjugate was also specifically internalized by primary human neuroendocrine tumor cells. This imaging approach, combining the specificity of ligand/receptor interaction with near-infrared fluorescence detection, may be applied in various other fields of cancer diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号