首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimating the material flows of rare earth elements (REEs) is essential to understanding which industries are most vulnerable to potential REE supply disruptions which, in turn, may inform policy recommendations aimed at reducing the supply risk. However, the REEs are a group of mineral commodities characterized by highly uncertain estimates of supply and demand due to the REE market's complexity, opacity, and small size. In this study, a streamlined methodology was applied to map mineral commodity first-use to final-use applications and to estimate total requirements at the national level based on available industrial data for final-use finished goods. This analysis examines REEs both as a group and individually, showing that total US requirements are between 15% and 16.5% of world requirements for the year 2015, the latest year with the most complete information available. The findings shed light on US industrial capabilities by revealing the discrepancy between the types of REEs that go into US raw material consumption and those that are contained in embedded consumption. For instance, given the United States’ large oil refining industry, US raw material consumption of lanthanum is quite high. In contrast, US raw material consumption of neodymium is relatively low, whereas embedded demand is comparatively high. This reflects the lack of industrial capacity to process REE concentrates into magnet material combined with the US's high imports of products that contain rare earth permanent magnets.  相似文献   

2.
Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a sufficiently high affinity to adsorb REEs and (ii) the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy) and lutetium (Lu) LIII-edge extended x-ray absorption fine structure (EXAFS) spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid) revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption–desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt.  相似文献   

3.
The widespread use of rare earth elements (REEs) has resulted in problems for soil and human health. Phytolacca americana L. is a herbaceous plant widely distributed in Dingnan county of Jiangxi province, China, which is a REE mining region (ion absorption rare earth mine) and the soil has high levels of REEs. An investigation of REE content of P. americana growing naturally in Dingnan county was conducted. REE concentrations in the roots, stems, and leaves of P. americana and in their rhizospheric soils were determined. Results showed that plant REEs concentrations varied among the sampling sites and can reach 1040 mg/kg in the leaves. Plant REEs concentrations decreased in the order of leaf > root > stem and all tissues were characterized by a light REE enrichment and a heavy REE depletion. However, P. americana exhibited preferential accumulation of light REEs during the absorption process (from soil to root) and preferential accumulation of heavy REEs during the translocation process (from stem to leaf). The ability of P. americana to accumulate high REEs in the shoot makes it a potential candidate for understanding the absorption mechanisms of REEs and for the phytoremediation of REEs contaminated soil.  相似文献   

4.
Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.  相似文献   

5.
翁伯琦  姜照伟  王义祥  黄元仿 《生态学报》2011,31(14):3973-3979
利用稀土镧肥种植牧草南非马唐,采用含镧牧草栽培杏鲍菇和以菇渣作为有机肥种植牧草进行连续性试验,研究镧在草-菇-土系统中的分配与生物富集情况。结果表明:施镧处理的南非马唐和杏鲍菇各器官的镧元素含量均高于不施镧处理,其中镧在牧草南非马唐中的分布为根>叶>茎,镧在杏鲍菇中的分布为菌盖>菌柄;外源镧进入土壤以后,南非马唐不同器官的镧元素生物富集系数均随着镧施入量的增加而增大,其中以根的镧生物富集系数最大,介于0.443—0.580之间。除高剂量(M4)处理外,叶和茎的镧生物富集系数不同处理间无显著差异,但根出现明显变化;含镧牧草栽培杏鲍菇和菇渣种植南非马唐后,不同器官的镧含量无显著增加,说明镧残留在草-菇-土系统中迁移转化效率降低。  相似文献   

6.
Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.  相似文献   

7.
Nha Trang Bay (NTB) is located on the Central Vietnam coast, western South China Sea. Recent coastal development of Nha Trang City has raised public concern over an increasing level of pollution within the bay and degradation of nearby coral reefs. In this study, multiple proxies (e.g., trace metals, rare earth elements (REEs), and Y/Ho) recorded in a massive Porites lutea coral colony were used to reconstruct changes in seawater conditions in the NTB from 1995 to 2009. A 14-year record of REEs and other trace metals revealed that the concentrations of terrestrial trace metals have increased dramatically in response to an increase in coastal development projects such as road, port, and resort constructions, port and river dredging, and dumping activities since 2000. The effects of such developmental processes are also evident in changes in REE patterns and Y/Ho ratios through time, suggesting that both parameters are critical proxies for marine pollution.  相似文献   

8.
有机配体对稀土元素在小麦体内积累和分异的影响   总被引:4,自引:0,他引:4  
丁士明  梁涛  闫军才  张自立  孙琴 《生态学报》2005,25(11):2888-2894
采用营养液培养和添加外源混合稀土等方法,研究了有机配体柠檬酸、EDTA和DTPA对稀土元素在小麦的根和叶中积累与分异的影响。结果表明,低浓度有机配体对小麦根和叶中的稀土元素,尤其是轻稀土元素的积累有轻微的促进作用,随浓度的升高则表现出显著的降低作用。有机配体对重稀土的作用比轻稀土强,使根和叶中稀土元素的分布曲线向重稀土相对亏缺的方向发展。3种配体对轻、重稀土分异的作用强度为:EDTA>DTPA>柠檬酸。通过VM INTEQ计算表明,在EDTA和DTPA作用下小麦叶中稀土元素的积累与轻、重稀土的分异主要由溶液中呈自由离子态稀土元素的含量和组成控制;柠檬酸作用下小麦叶中稀土元素的变化与自由离子态稀土的含量和组成关系较弱,推测REE-柠檬酸络合物可被小麦直接吸收并运转到小麦的叶中。  相似文献   

9.
Previous studies on rare earth element (REE) bioaccumulation have focused on their accumulation rate and fractionation, but the processes involved remain unclear. In this study, the accumulation and fractionation of REEs in wheat (Triticum aestivum L.) were investigated using solution culture with exogenous mixed REEs. A decrease in REE contents was observed from the roots to the tops of wheat. Significant fractionations of REEs were found in wheat organs as compared to the exogenous mixed REEs. Middle REE (MREE, the elements from Sm to Gd) enrichment and an M-type tetrad effect (an effect that can cause a split of REE patterns into four consecutive convex segments) were observed in the roots, which were probably caused by phosphate precipitation of REEs in/on the roots and absorption of REEs to root cell walls. Light REE (LREE, the elements from La to Eu) and heavy REE (HREE, the elements from Gd to Lu) enrichments were observed in the stems and leaves, respectively, accompanied by conspicuous W-type tetrad effects (an opposite effect to the M-type tetrad effect) in the REE patterns. HREE enrichment decreased from the older to the younger leaves and increased upwards within a single leaf. It is suggested that the solution complexation that occurred in the xylem vessels plays an important role in REE fractionations in the above-ground parts of wheat.  相似文献   

10.
Few studies have been carried out on the effects of ligands on rare earth element (REE) bioaccumulation processes. In this study, the effects of phosphate (Pi, an inorganic ligand) and citrate (an organic ligand) on accumulation and fractionation of REEs in wheat were investigated using aqueous culture with extraneous mixed REEs (MRE). The results show that initial Pi solution culture at various levels followed by exposure to a fixed-MRE solution did not significantly change the total concentrations of REEs (SigmaREE) in roots, whereas the SigmaREE in leaves dramatically decreased with increasing levels of Pi applied. Simultaneous culture of wheat with mixture of MRE and citrate solutions caused obvious decreases of the SigmaREE in both roots and leaves. Compared with MRE, significant fractionations of REEs were found in wheat organs when no ligand was applied. Notable middle REE (MREE) enrichment and M-type tetrad effect were observed in the roots, and heavy REE (HREE) enrichment and W-type tetrad effect existed in the leaves. Pi treatments did not significantly affect the fractionations of REEs in the roots, but enrichment of HREEs in the leaves slightly increased at the highest level of Pi applied. Fractionations of REEs in both roots and leaves decreased with increasing levels of citrate applied; at higher levels of citrate (> or =150 microM), no above fractionation features were observed in wheat, but light REE (LREE) enrichment existed in the roots and leaves. The results indicate that ligands might play important roles in accumulation and fractionation of REEs during bioaccumulation processes.  相似文献   

11.
On the assumption that rare earth elements (REEs) are nontoxic, they are being utilized as replacements of toxic heavy metals in novel technological applications. However, REEs are not entirely innocuous, and their impact on health is still uncertain. In the past decade, our laboratory has studied the urinary excretion of REEs in male Wistar rats given chlorides of europium, scandium, and yttrium solutions by one-shot intraperitoneal injection or oral dose. The present paper describes three experiments for the suitability and appropriateness of a method to use urine for biological monitoring of exposure to these REEs. The concentrations of REEs were determined in cumulative urine samples taken at 0?C24?h by inductively coupled plasma atomic emission spectroscopy, showing that the urinary excretion of REEs is <2?%. Rare earth elements form colloidal conjugates in the bloodstream, which make high REEs accumulation in the reticuloendothelial system and glomeruli and low urinary excretion. The high sensitivity of inductively coupled plasma?Cargon emission spectrometry analytical methods, with detection limits of <2???g/L, makes urine a comprehensive assessment tool that reflects REE exposure. The analytical method and animal experimental model described in this study will be of great importance and encourage further discussion for future studies.  相似文献   

12.
Recent constraints on supplies of the rare earth elements (REEs) have led to concerns about their long‐term availability as well as the consequences that shortages would pose for modern technology. To assess this situation, we apply a comprehensive “criticality” methodology to the REE: lanthanum (La); cerium (Ce); praseodymium (Pr); neodymium (Nd); samarium (Sm); europium (Eu); gadolinium (Gd); terbium (Tb); dysprosium (Dy); holmium (Ho); erbium (Er); thulium (Tm); ytterbium (Yb); lutetium (Lu); and yttrium (Y). Assessments are made on national (U.S. and China) and global levels for the year 2008. Evaluations of each indicator are presented and the results plotted in “criticality space” on a 0 to 100 scale. Over the medium term (5 to 10 years), supply risk (SR) for all REEs is moderate with minimal variation (62.8 to 65.1). Over the long term (10 to 100 years), SR is low (42.1 to 49.2). Environmental implications scores, reflecting the economic allocation of environmental burdens, range from 4.2 for La to 34.4 for Lu. Eu, Er, and Dy have the highest vulnerability to supply restriction (VSR) at the global level (50.6, 49.2, and 47.4, respectively), whereas Sm has the lowest (15.1). This is mainly a reflection of their substitution potential. Similarly, at the national level for the United States and China, Eu and Sm have the highest and lowest VSR scores, respectively, although there are notable differences in scores among the REEs and between countries. Although China's export restrictions render REE supplies inadequate to meet demand at present, our analysis indicates a lower criticality for REEs over the longer term than for a number of other industrially used metals.  相似文献   

13.
Fu  FengFu  Akagi  Tasuku  Yabuki  Sadayo  Iwaki  Masaya 《Plant and Soil》2001,235(1):53-64
Rare earth elements (REEs) in five species of soil-grown plants (Taxodium japonicum, Populus sieboldii, Sasa nipponica, Thea sinensis and Vicia villosa) and in the soil on which each plant grew were determined with an inductively coupled plasma mass spectrometer (ICP-MS) in order to observe the variation in the distribution of REEs and to elucidate their source in soil-grown plants. The plant samples were divided into root (secondary root and main root), trunk (stem) and leaf; the soils into water soluble (soilsoluble fraction), HCl and HNO3 soluble (soilnon-silicate fraction) and HF soluble (soilsilicate fraction). The REE abundances of samples were compared using REE patterns where the abundances were normalized to those of a chondrite and plotted on a logarithmic scale against the atomic number. All the plants showed similar REE patterns independent of species and location, and a W-shape variation (W-type tetrad effect) and abundance depletion of cerium (negative Ce anomaly) were found in each REE patterns of plants, more conspicuous tetrad effect being observed in HREE (heavier rare earth elements) region than in LREE (lighter rare earth elements) region. The overall variation of REE patterns of each secondary root was not similar to that of soilsoluble fraction, but similar to that of soilsilicate fraction except for the tetrad effect and Ce anomaly. The REE patterns can be interpreted by the idea that plants of different species take in REEs and Si from different parts in the soil. The results of this study seem to imply that Sasa nipponica and Vicia villosa take in free REEs and Si rather directly from silicate in the soil, and that a majority of REEs and Si in Taxodium japonicum and Thea sinensis are originated from the soluble fraction in the soil.  相似文献   

14.
用感耦等离子体发射光谱法(ICP-AES)测定了东西赣南地区非稀土矿区和4处不同稀土矿区内,土壤-铁芒萁系统中La、Ce、Pr、Nd、Sm、Gd、Dy、Yb和Y的含量,并对其在土壤剖面层及铁芒萁植物体内的分布、迁移特征进行了研究,结果表明,土训层的底土层含量最高,但表土层铈相对富集、稀土元素总量(∑REE)在铁芒萁植物体内的分布规律是叶>根>茎>叶柄,单一稀土的分布规律各异,La、Ce、Pr、Nd的分布规律表现为:叶>根>茎>叶柄;Sm和Gd在不同采样点表现为叶>根>茎>叶柄或根>叶>茎>叶柄;Dy、Yb和Y均有3种不同的分布模式:叶>根>茎>叶柄、根>叶>茎>叶柄及根>茎>叶>叶柄,稀土元素在铁芒萁体内的迁移过程中,发生了明显的分馏作用,茎、叶柄、叶中的重稀土相对贫乏。  相似文献   

15.
With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions.  相似文献   

16.
With the exploitation of rare earth ore, more and more REEs came into groundwater. This was a waste of resources and could be harmful to the organisms. This study aimed to find an efficient adsorption material to mitigate the above issue. Through doping sodium alginate (SA) with poly-γ-glutamate (PGA), an immobilized gel particle material was produced. The composite exhibited excellent capacity for adsorbing rare earth elements (REEs). The amount of La3+ adsorbed on the SA-PGA gel particles reached approximately 163.93 mg/g compared to the 81.97 mg/g adsorbed on SA alone. The factors that potentially affected the adsorption efficiency of the SA-PGA composite, including the initial concentration of REEs, the adsorbent dosage, and the pH of the solution, were investigated. 15 types of REEs in single and mixed aqueous solutions were used to explore the selective adsorption of REEs on gel particles. Scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy analyses of the SA and SA-PGA gel beads suggested that the carboxyl groups in the composite might play a key role in the adsorption process and the morphology of SA-PGA changed from the compact structure of SA to a porous structure after doping PGA. The kinetics and thermodynamics of the adsorption of REEs were well fit with the pseudo-second-order equation and the Langmuir adsorption isotherm model, respectively. It appears that SA-PGA is useful for recycling REEs from wastewater.  相似文献   

17.
用感耦等离子体发射光谱法(ICP-AES)测定了江西赣南地区非稀土矿区和处不同稀土矿区内,土壤-铁芒萁系统中La、Ce、Pr、Nd、Sm、Gy、Db、Yb和Y的含量,并对其在土壤剖面层及铁芒萁植物体内的分布、迁移特征进行了研究.结果表明,土壤剖面层的底土层含量最高,但表土层铈相对富集.稀土元素总量(∑REE)在铁芒萁植物体内的分布规律是叶>根>茎>叶柄,单一稀土元素的分布规律各异,La、Ce、Pr、Nd的分布规律表现为:叶>根>茎>叶柄;Sm和Gd在不同采样点表现为叶>根>茎>叶柄或根>叶>茎>叶柄;Dy、Yb和Y均有3种不同的分布模式:叶>根>茎>叶柄、根>叶>茎>叶柄及根>茎>叶>叶柄.稀土元素在铁芒萁体内的迁移过程中,发生了明显的分馏作用,茎、叶柄、叶中的重稀土相对贫乏.  相似文献   

18.
Rare earth elements in soil and in soil-grown plants   总被引:21,自引:0,他引:21  
Wyttenbach  A.  Furrer  V.  Schleppi  P.  Tobler  L. 《Plant and Soil》1998,199(2):267-273
Concentrations of the rare earth elements (REEs) La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu were determined in leaves of 6 plant species (Norway spruce, silver fir, maple, ivy, blackberry, and wood fern), and in pertinent soils and soil extracts, also taken from the same site. The distribution of the individual REEs in plants showed little or no agreement with that in the soil or the soil extracts. Ce had a negative anomaly with respect to the soil in all plants. The REE distribution patterns of fir and spruce were almost identical, but differed profoundly from that of the other species. In most cases, concentration ratios between species were a smooth function of the atomic number of the REE. Very similar results were obtained at 2 additional sites.  相似文献   

19.
Rare earth elements (REEs) are among the common minerals in the Rare earth environment that are very precious and also enhance soil properties. The aim of this present study is to evaluate the accumulation of REEs by bacterial isolates of rare earth environment. Morphological and biochemical characterization were done for 37 bacterial isolates and also molecular studies were carried out using 16S rRNA sequencing method. The assessment of REEs composition in soil samples of Chavara and Manavalakurichi analyzed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) showed the abundance of Cerium and Neodymium among lanthanides. The bioaccumulation study of rare earth elements by Bacillus cereus were accomplished employing FT-IR spectrum and ICP-OES analysis. The significant accumulation of rare earth elements especially Cerium and Neodymium was noticed in Bacillus cereus isolated from rare earth environment.  相似文献   

20.
A total of 26 samples were collected from Dachang, Chehe and Liuzhai in Nandan County, China, in order to investigate the concentrations of rare earth elements (REEs) and associated health risk in particulate matter. The concentrations of REEs in Dachang (23.54 ng/m3), Chehe (20.29 ng/m3) were significantly higher than those in Liuzhai (8.1 ng/m3). The light rare earth elements (LREEs) account for 87.08%, 87.09%, and 86.17% of the total REE burden in PM10 at Dachang, Chehe, and Liuzhai, respectively, indicating that the distribution pattern of REEs in PM10 was characterized by the obvious fractionation of LREEs. Enrichment factor calculation indicated that EFs for La, Ce, Nd, Pr, and Nd in PM10 from Dachang and Chehe were greater than 2, indicating moderate enrichment. Source identification indicated that REEs in PM10 from Dacheng and Chehe originated from anthropogenic activities such as mining and smelting activities, while REEs in PM10 from Liuzhai were associated with natural sources, like soil erosion. Noncarcinogenic and carcinogenic risks associated with the exposure of REEs in PM10 were negligible based on the health risk assessment models. However, greater noncarcinogenic risk for children was found in studied areas compared with the adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号