首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-produced mutagens in culture by fungi may affect DNA analysis of the same fungi. This has not been considered previously. Many fungi produce numerous mutagenic secondary metabolites (SM) in culture. There is a paradox of growing fungi in media to produce representative DNA which also support mutagenic SM. This is a crucial issue in developing diagnostic and phylogenetic methods, especially for closely-related fungi. For example, idh gene analysis of the patulin metabolic pathway in fungi can be interpreted as producing some false negative and positive results in terms of possession, or nonpossession, of the gene from mutated strains. The most obvious mycotoxins and fungi to consider in this regard are aflatoxins and Aspergillus , as aflatoxins are the most mutagenic natural compounds. Many other fungi and SM are relevant. Conditions to grow fungi have not been selected to inhibit SM production although relevant data exist. In fact, fungi repair damaged nucleic acid (NA) and are capable of removing toxins by employing transporter proteins. These and NA repair mechanisms could be inhibited by secondary metabolites. Mutagenic effects may involve inhibition of DNA stabilizing enzymes. There may be an equivalent situation for bacteria. Researchers need to devise methods to reduce SM for valid protocols. More work on how mutagens affect the NA of producing fungus in vitro is required. The current review assesses the potential seriousness of the situation with selected papers.  相似文献   

2.
Summary A study was made of chromosome aberrations in Crepis capillaris seedlings, induced by the reaction products of chemical mutagens with seed metabolites. Interaction between ethylenimine and seed metabolites of some plants of the family Compositae (C. capillaris, Taraxacum officinale, Pyrethrum carneum, Helianthus annuus) has been found to lead to the formation of highly active secondary mutagens whose action remains similar to that of ethylenimine, although the effect of ethylenimine is enhanced dozens of times. The substances responsible for this enhancement effect are contained in the fruit coating of the seed. The metabolites of seeds of other plants studied (Triticum vulgare, Hordeum vulgare, Fagopyrum esculentum) enhanced the effect of ethylenimine only 1.5–2.0 times. Unlike ethylenimine, the effect of its derivatives (thioTEP and phosphazine) and of ethyl methanesulphonate, HN2 and maleic hydrazide is not enhanced after their interaction with metabolites of compositae plant seeds. Experiments with HN2 revealed an almost complete inactivation of the mutagenic action of NH2 by metabolites of C. capillaris seeds. The observed modification of the mutagenic action of ethylenimine and NH2 after successive treatment of seedlings with mutagens and metabolites of seeds points to the preservation of the mutagen in the cell. It is concluded that when chemical mutagens act on the cells, chromosome aberrations are induced not only by the chemical agent itself, but also by its reaction with cell metabolites.  相似文献   

3.
Marine organisms especially those that live sessile, as sponges, are well known to have specific relationships with a great variety of microorganisms including bacteria and fungi. As most simple metazoan phylum, the Porifera, which emerged first during the transition from the non-Metazoa to the Metazoa from the common ancestor, comprise wide arrays of recognition molecules, both for Gram-negative bacteria and for Gram-positive bacteria as well as for fungi. They react specifically with effector molecules to inhibit or kill the invading microorganisms. The elicitation and the subsequent effector reactions of the sponges towards these microbes are outlined. However, besides of the elimination of bacteria and fungi, some of those taxa are kept as symbionts of the sponges, allowing them, for example, to accumulate the essential element manganese or to synthesize carotinoids. The sponges produce low-molecular-weight bioactive compounds, secondary metabolites, to eliminate the microorganisms. In addition, they are armed with cationic antimicrobial peptides allowing them to defend against invasive microorganisms and, in parallel, to kill or repel also metazoan invaders. The broad range of chemically and functionally different compounds qualifies the Porifera as the most important animal phylum to be exploited as a source for the isolation of new potential drugs. First molecular biological strategies have been outlined to obtain those compounds in a sustainable way, by producing them recombinantly.  相似文献   

4.
G Mazza 《Applied microbiology》1983,45(6):1949-1952
Microorganisms producing DNA-damaging metabolites (i.e., fungi and streptomycetes) were detected by the Bacillus subtilis rec assay with agar plugs from plates on which the microorganisms had been grown. This assay allowed rapid identification of aflatoxinogenic fungi and streptomycetes producing strong DNA-damaging metabolites. For screening programs, several media have to be used to grow the microorganisms to be tested.  相似文献   

5.
Microorganisms producing DNA-damaging metabolites (i.e., fungi and streptomycetes) were detected by the Bacillus subtilis rec assay with agar plugs from plates on which the microorganisms had been grown. This assay allowed rapid identification of aflatoxinogenic fungi and streptomycetes producing strong DNA-damaging metabolites. For screening programs, several media have to be used to grow the microorganisms to be tested.  相似文献   

6.
In the past few decades groups of scientists have focused their study on relatively new microorganisms called endophytes. By definition these microorganisms, mostly fungi and bacteria, colonise the intercellular spaces of the plant tissues. The mutual relationship between endophytic microorganisms and their host plants, taxanomy and ecology of endophytes are being studied. Some of these microorganisms produce bioactive secondary metabolites that may be involved in a host-endophyte relationship. Recently, many endophytic bioactive metabolites, known as well as new substances, possesing a wide variety of biological activities as antibiotic, antitumor, antiinflammatory, antioxidant, etc. have been identified. The microorganisms such as endophytes may be very interesting for biotechnological production of bioactive substances as medicinally important agents. Therefore the aim of this review is to briefly characterize endophytes and summarize the structuraly different bioactive secondary metabolites produced by endophytic microorganisms as well as microbial sources of these metabolites and their host plants.  相似文献   

7.
The potential genotoxic effects of several pure secondary metabolites produced by fungi used as biological control agents (BCAs) were studied with the Ames Salmonella/microsome mutagenicity assay and the Vitotox test, with and without metabolic activation. A complete set of Salmonella tester strains was used to avoid false negative results. To detect possible mutagenic and/or cytotoxic effects of fungal secondary metabolites due to synergistic action, crude extracts and fungal cell extracts of the BCAs were also examined. Although the sensitivity of the methods varied depending on the metabolite used, clearly no genotoxicity was observed in all cases. The results of the two assays are discussed in the light of being used in a complementary fashion for a convincing risk-assessment evaluation of fungal BCAs and their secondary metabolites.  相似文献   

8.
The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores existed on this planet, plants had to cope with microbial pathogens. Therefore, plant pathogenic microorganisms may have played an important role in the early evolution of the secondary metabolite diversity. In this review, we discuss the impact that plant-produced PAs have on plant-associated microorganisms. The objective of the review is to present the current knowledge on PAs with respect to anti-microbial activities, adaptation and detoxification by microorganisms, pathogenic fungi, root protection and PA induction. Many in vitro experiments showed effects of PAs on microorganisms. These results point to the potential of microorganisms to be important for the evolution of PAs. However, only a few in vivo studies have been published and support the results of the in vitro studies. In conclusion, the topics pointed out in this review need further exploration by carrying out ecological experiments and field studies.  相似文献   

9.
Coffee and caffeine are mutagenic to bacteria and fungi, and in high concentrations they are also mutagenic to mammalian cells in culture. However, the mutagenic effects of coffee disappear when bacteria or mammalian cells are cultured in the presence of liver extracts which contain detoxifying enzymes. In vivo, coffee and caffeine are devoid of mutagenic effects. Coffee and caffeine are able to interact with many other mutagens and their effects are synergistic with X-rays, ultraviolet light and some chemical agents. Caffeine seems to potentiate rather than to induce chromosomal aberrations and also to transform sublethal damage of mutagenic agents into lethal damage. Conversely, coffee and caffeine are also able to inhibit the mutagenic effects of numerous chemicals. These antimutagenic effects depend on the time of administration of coffee as compared to the acting time of the mutagenic agent. In that case, caffeine seems to be able to restore the normal cycle of mitosis and phosphorylation in irradiated cells. Finally, the potential genotoxic and mutagenic effects of the most important constituents of coffee are reviewed. Mutagenicity of caffeine is mainly attributed to chemically reactive components such as aliphatic dicarbonyls. The latter compounds, formed during the roasting process, are mutagenic to bacteria but less to mammalian cells. Hydrogen peroxide is not very active but seems to considerably enhance mutagenic properties of methylglyoxal. Phenolic compounds are not mutagenic but rather anticarcinogenic. Benzopyrene and mutagens formed during pyrolysis are not mutagenic whereas roasting of coffee beans at high temperature generates mutagenic heterocyclic amines. In conclusion, the mutagenic potential of coffee and caffeine has been demonstrated in lower organisms, but usually at doses several orders of magnitude greater than the estimated lethal dose for caffeine in humans. Therefore, the chances of coffee and caffeine consumption in moderate to normal amounts to induce mutagenic effects in humans are almost nonexistent.  相似文献   

10.
Cyclophosphamide (CPA) and its main metabolites were analyzed with respect to their mutagenic activities in Salmonella, human peripheral lymphocytes (PL), and Chinese hamster ovary (CHO) cells. In Salmonella, the compounds were activated with S9 mix from rat livers, which were unstimulated or stimulated with Aroclor 1254 or phenobarbital. For the enzyme inducers the following order of efficiency was found for all test compounds except carboxyphosphamide: phenobarbital greater than Aroclor 1254 greater than non-induced. The most potent mutagens in all 3 test systems were 4-OH-CPA, PAM and nor-HN2. S9 mix transforms 4-OH-CPA to strong mutagenic compounds in the Salmonella assay. All metabolites tested in the Salmonella assay were activated by S9 mix to higher mutagenic potential.  相似文献   

11.
Genotoxicity of non-covalent interactions: DNA intercalators   总被引:1,自引:0,他引:1  
This review provides an update on the mutagenicity of intercalating chemicals, as carried out over the last 17 years. The most extensively studied DNA intercalating agents are acridine and its derivatives, that bind reversibly but non-covalently to DNA. These are frameshift mutagens, especially in bacteria and bacteriophage, but do not otherwise show a wide range of mutagenic properties. Di-acridines or di-quinolines may be either mono- or bis-intercalators, depending upon the length of the alkyl chain separating the chromophores. Those which monointercalate appear as either weak frameshift mutagens in bacteria, or as non-mutagens. However, some of the bisintercalators act as "petite" mutagens in Saccharomyces cerevisiae, suggesting that they may be more likely to target mitochondrial as compared with nuclear DNA. Some of the new methodologies for detecting intercalation suggest this may be a property of a wider range of chemicals than previously recognised. For example, quite a number of flavonoids appear to intercalate into DNA. However, their mutagenic properties may be dominated by the fact that many of them are also able to inhibit topoisomerase II enzymes, and this property implies that they will be potent recombinogens and clastogens. DNA intercalation may serve to position other, chemically reactive molecules, in specific ways on the DNA, leading to a distinctive (and wider) range of mutagenic properties, and possible carcinogenic potential.  相似文献   

12.
Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.  相似文献   

13.
A screening procedure for microorganisms which have an ability to produce a desired compound as their secondary metabolite is first proposed. In some cases, the target microorganisms can be expected to grow and be enriched in a medium containing the desired compound, namely one of the secondary metabolites of the microorganisms, as the sole source of carbon, degrading and assimilating the compound to the primary metabolites. This approach was applied to isolate alkano-δ-lactones producing fungi by using a medium containing alkano-δ-lactones as the sole source of carbon. We isolated Fusarium solani and Trichoderma viride that had the ability to biosynthesize 2-deceno-δ-lactone (massoialactone) and 2,4-decadieno-δ-lactone(6-pentyl-δ-pyrone), respectively, in a glucose medium.  相似文献   

14.
Relationship between secondary metabolism and fungal development.   总被引:5,自引:0,他引:5  
Filamentous fungi are unique organisms-rivaled only by actinomycetes and plants-in producing a wide range of natural products called secondary metabolites. These compounds are very diverse in structure and perform functions that are not always known. However, most secondary metabolites are produced after the fungus has completed its initial growth phase and is beginning a stage of development represented by the formation of spores. In this review, we describe secondary metabolites produced by fungi that act as sporogenic factors to influence fungal development, are required for spore viability, or are produced at a time in the life cycle that coincides with development. We describe environmental and genetic factors that can influence the production of secondary metabolites. In the case of the filamentous fungus Aspergillus nidulans, we review the only described work that genetically links the sporulation of this fungus to the production of the mycotoxin sterigmatocystin through a shared G-protein signaling pathway.  相似文献   

15.
Microbial toxins, their functional role and phylogenetic validity   总被引:2,自引:0,他引:2  
R S Pore 《Bio Systems》1978,10(1-2):189-198
Microbially produced toxins, which appear to lack a role in microbial survival, may be antimicrobial compounds of significance to the producers. These toxin/antibiotics may act against cell metabolism shared by man or animals and other microorganisms. Protein toxin/antibiotics are produced by single species of bacteria. Those from fungi and algae are nonprotein secondary metabolites and several microorganisms may make the same or similar toxin/antibiotics.  相似文献   

16.
Horizontally transmitted fungal endophytes are an ecological group of fungi, mostly belonging to the Ascomycota, that reside in the aerial tissues and roots of plants without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce an array of secondary metabolites exhibiting a variety of biological activity. Although the ability of fungi to produce unique bioactive metabolites is well known, endophytes have not been exploited, perhaps because we are only beginning to understand their distribution and biology. This review emphasizes the need to routinely include endophytic fungi in the screening of organisms for bioactive metabolites and novel drugs; it also underscores the need to use information obtained concerning fungal secondary metabolite production from other groups of fungi for a targeted screening approach.  相似文献   

17.
Relationship between Secondary Metabolism and Fungal Development   总被引:27,自引:0,他引:27       下载免费PDF全文
Filamentous fungi are unique organisms—rivaled only by actinomycetes and plants—in producing a wide range of natural products called secondary metabolites. These compounds are very diverse in structure and perform functions that are not always known. However, most secondary metabolites are produced after the fungus has completed its initial growth phase and is beginning a stage of development represented by the formation of spores. In this review, we describe secondary metabolites produced by fungi that act as sporogenic factors to influence fungal development, are required for spore viability, or are produced at a time in the life cycle that coincides with development. We describe environmental and genetic factors that can influence the production of secondary metabolites. In the case of the filamentous fungus Aspergillus nidulans, we review the only described work that genetically links the sporulation of this fungus to the production of the mycotoxin sterigmatocystin through a shared G-protein signaling pathway.  相似文献   

18.
In some cases, the Salmonella mutagenicity assay may fail to predict the carcinogenic potential of PAH (and of complex mixtures containing PAH) because of nonoptimal in vitro metabolic activation parameters. In this study, 7 petroleum-derived complex mixtures, as well as a number of individual PAH which were representative constituents of such mixtures, were tested in a Salmonella prescreen using quadrant plates with rat or hamster S9 at concentrations approximately 2-8 times those used in the standard assay. Some PAH (perylene, quinoline, benzo[b]chrysene, phenanthrene, anthracene) were optimally activated to mutagens by S9 at 400 microliters/plate. Rat S9 was similar to hamster S9 for most tested PAH, but anthracene and quinoline mutagenicity was enhanced by hamster S9. All 7 complex mixtures were more mutagenic with 200-400 microliters/plate S9; rat was generally slightly more efficient than hamster. Modifying this assay to include a prescreen using a range of S9 concentrations (and perhaps from species other than rat) may improve prediction of the potential carcinogenicity of complex petroleum-derived mixtures.  相似文献   

19.
The vast repertoire of toxic fungal secondary metabolites has long been assumed to have an evolved protective role against fungivory. It still remains elusive, however, whether fungi contain these compounds as an anti-predator adaptation. We demonstrate that loss of secondary metabolites in the soil mould Aspergillus nidulans causes, under the attack of the fungivorous springtail Folsomia candida, a disadvantage to the fungus. Springtails exhibited a distinct preference for feeding on a mutant deleted for LaeA, a global regulator of Aspergillus secondary metabolites. Consumption of the mutant yielded a reproductive advantage to the arthropod but detrimental effects on fungal biomass compared with a wild-type fungus capable of producing the entire arsenal of secondary metabolites. Our results demonstrate that fungal secondary metabolites shape food choice behaviour, can affect population dynamics of fungivores, and suggest that fungivores may provide a selective force favouring secondary metabolites synthesis in fungi.  相似文献   

20.
Plants used in traditional medicine have stood up to the test of time and contributed many novel compounds for preventive and curative medicine to modern science. India is sitting on a gold mine of well recorded and traditionally well practiced knowledge of herbal medicine. Specially, plants growing at high altitude in Himalayan pastures are time-honored sources of health and general well being of local inhabitants. As of today, Himalayan plants are a major contributor to the herbal pharmaceutical industry both of India and other countries. Plants growing at higher altitudes are subjected to an assault of diverse testing situations including higher doses of mutagenic UV-radiation, physiological drought, desiccation and strong winds. Plants interact with stressful environments by physiological adaptation and altering the biochemical profile of plant tissues and producing a spectrum of secondary metabolites. Secondary metabolites are of special interest to scientists because of their unique pharmacophores and medicinal properties. Secondary metabolites like polyphenols, terpenes and alkaloids have been reported to possess antimutagenic and anticancer properties in many studies. The fundamental aspiration of the current review is to divulge the antimutagenic/anticancer potential of five alpine plants used as food or medicine by the populations living at high altitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号