首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new sECM biomaterials have been successfully used to perform 3D cell culture, drug and growth factor release, drug toxicity testing, and to develop a new anticancer drug evaluation model. The ready availability of these materials should facilitate progress in understanding regulation of cellular physiology as influenced by endogenous signals or exogenous pharmaceutical agents in 3-D tissue-like cell cultures. Importantly, the use of primary hepatocytes and soon, human liver stem cells, cultured in Extracel™ will expedite drug toxicity testing in vitro and in vivo. In addition, the application of the orthotopic engineered tumor xenograft model using Extracel™-containing tumor cells in nude mice should improve the selection of new anticancer agents that will show clinical efficacy in cancer patients.  相似文献   

2.
Simulated microgravity culture system for a 3-D carcinoma tissue model   总被引:7,自引:0,他引:7  
Nakamura K  Kuga H  Morisaki T  Baba E  Sato N  Mizumoto K  Sueishi K  Tanaka M  Katano M 《BioTechniques》2002,33(5):1068-70, 1072, 1074-6
An in vitro organotypic culture model is needed to understand the complexities of carcinoma tissue consisting of carcinoma cells, stromal cells, and extracellular matrices. We developed a new in vitro model of carcinoma tissue using a rotary cell culture system with four disposable vessels (RCCS-4D) that provides a simulated microgravity condition. Solid collagen gels containing human pancreatic carcinoma NOR-P1 cells and fibroblasts or minced human pancreatic carcinoma tissue were cultured under a simulated microgravity condition or a static Ig condition for seven days. NOR-P1 cultures subjected to the simulated microgravity condition showed greater numbers of mitotic, cycling (Ki-67-positive), nuclear factor-kappa B-activating cells, and a lower number of apoptotic cells than were shown by cultures subjected to the static Ig condition. In addition, human pancreatic carcinoma specimens cultured under the simulated microgravity condition maintained the heterogeneous composition and cellular activity (determined by the cycling cell ratio and mitotic index) of the original carcinoma tissue better than static culture conditions. This new 3-D rotary cell culture system with four disposal vessels may be useful for in vitro studies of complex pancreatic carcinoma tissue.  相似文献   

3.
The common technique of growing cells on tissue culture plastic (TCP) is gradually being supplanted by methods for culturing cells in two-dimensions (2-D) on matrices with more appropriate physical and biological properties or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm is currently constrained by the lack of a biocompatible material in the marketplace that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. In this Prospect, I argue that the standard for 3-D cell culture should be bio-inspired, biomimetic materials that can be used "as is" in drug discovery, toxicology, cell banking, and ultimately in medicine. Such biomaterials must therefore be highly reproducible, manufacturable, approvable, and affordable. To obtain integrated, functional, multicellular systems that recapitulate tissues and organs, the needs of the true end-users-physicians and patients-must dictate the key design criteria. Herein I describe the development of one such material that meets these requirements: a covalently crosslinked, biodegradable, simplified mimic of the extracellular matrix (ECM) that permits 3-D culture of cells in vitro and enables tissue formation in vivo. In contrast to materials that were designed for in vitro cell culture and then found unsuitable for clinical use, these semi-synthetic hyaluronan-derived materials were developed for in vivo tissue repair, and are now being re-engineered for in vitro applications in research.  相似文献   

4.
A series of starch/methacrylic acid (MAAc) copolymer hydrogels of different compositions were synthesized using γ-rays induced polymerization and crosslinking. The effects of the preparation conditions such as the feed solution concentration, feed solution composition and irradiation dose on the gelation process of the synthesized copolymer were investigated. The swelling behavior of the starch/methacrylic acid (MAAc) copolymer hydrogels was characterized by studying the effect of the hydrogel composition on the time- and pH-dependent swelling. Swelling kinetics showed that the synthesized hydrogels possessed Fickian diffusion behavior at pH 1 and non-Fickian diffusion at pH 7 which recommend them as good candidate for colon specific drug delivery systems. The synthesized hydrogels were loaded with ketoprofen as a model drug to investigate the release behavior of the synthesized hydrogels. The results showed the ability of the hydrogels to keep the loaded drug at pH 1 and release it at pH 7. The data also showed that the release rate can be controlled by controlling the preparation conditions such as comonomer concentration and composition and irradiation dose.  相似文献   

5.
The partitioning of carbon between reserve polysaccharide and alkaloid secondary products was investigated in batch cultures of transformed roots of Datura stramonium grown in media in which the carbon substrate concentration was held constant and the level of mineral nutrients was varied. The growth and accumulation of starch and hyoscyamine was examined in roots grown at temperatures of 20°C, 25°C or 30°C in media containing 5% sucrose and levels of mineral nutrients varying from 1/4 to twice the standard level of Gamborg's B5 salts. The dry matter content was highest (up to 15% w/w) in roots grown at either 20°C or 25°C in medium of the lowest ionic strenth (1/4 B5 salts) and decreased as the ionic strength was raised (down to 7% w/w with 2 B5 salts). Up to half of this decrease could be accounted for by loss of starch from the roots. At 20°C and 25°C, the starch content of the roots grown in medium of the lowest ionic strength (1/4 B5) was 40 mg g-1 and 22 mg g-1 fresh weight respectively but decreased to less than 1 mg g-1 weight at either temperature when the ionic strength of the medium was raised to 2 B5. At 30°C, starch accumulation was severely inhibited in all media. In contrast, varying either the temperature or the ionic strength of the medium had only a small effect on hyoscyamine accumulation which remained at between 0.4–0.6 mg g-1 fresh weight. Although increases in the level of mineral salts had little effect on the hyoscyamine content of the roots, total yields however, increased due to stimulation of growth. Time course experiments showed that cultures grown at either 20°C or 25°C continued to accumulate both starch and hyoscyamine into late stationary phase.  相似文献   

6.
应用MS为基本培养基,通过各种培养条件和不同激素配比,探讨蔓花生组织培养及其植株再生条件的优化。结果显示:幼叶为最佳的外植体,在幼叶愈伤诱导过程中,不超过12h光照,光照强度在21.6μmol.m-2.s-1均可;诱导愈伤组织的适宜培养基为MS+0.5mg/L6-BA+0.2mg/L2,4-D或MS+0.5mg/L6-BA+2mg/LNAA;最适的分化培养基为MS+1mg/LTDZ+2mg/L6-BA+0.5mg/LNAA;最适的生根培养基1/2MS+1mg/LNAA+1mg/LPP333。  相似文献   

7.
Interstitial flow is an important component of the microcirculation and interstitial environment, yet its effects on cell organization and tissue architecture are poorly understood, in part due to the lack of in vitro models. To examine the effects of interstitial flow on cell morphology and matrix remodeling, we developed a tissue culture model that physically supports soft tissue cultures and allows microscopic visualization of cells within the three-dimensional matrix. In addition, pressure-flow relationships can be continuously monitored to evaluate the bulk hydraulic resistance as an indicator of changes in the overall matrix integrity. We observed that cells such as human dermal fibroblasts aligned perpendicular to the direction of interstitial flow. In contrast, fibroblasts in static three-dimensional controls remained randomly oriented, whereas cells subjected to fluid shear as a two-dimensional monolayer regressed. Also, the dynamic measurements of hydraulic conductivity suggest reorganization toward a steady state. These primary findings help establish the importance of interstitial flow on the biology of tissue organization and interstitial fluid balance.  相似文献   

8.
9.
10.
It has been reported that 3-D cultures of hepatocytes or HepG2 cells were less susceptible to methotrexate (MTX) than their 2-D counterparts. Such a mechanism was addressed in this study by investigation of MTX hepatotoxicity in gel entrapped (3-D) rat hepatocytes vs. traditional monolayer culture (2-D). Similarly, gel entrapped hepatocytes showed higher drug resistance to MTX than hepatocyte monolayers in whatever culture medium with or without modification by hormone supplements (dexamethasone, glucagon and insulin). It was also found that medium modification by hormones greatly increased drug resistance of hepatocyte monolayers but has only a slight effect on 3-D cultured hepatocytes. These differential MTX toxicities regarding culture medium and culture models were assumed to correlate with multidrug resistance associated protein 2 (Mrp2). The involvement of Mrp2 was confirmed directly by the fact that MTX intracellularly accumulated less in gel entrapped hepatocytes than in hepatocyte monolayer but could be enhanced by Mrp2 inhibitors accompanied by reduced drug resistance. Furthermore, the expression of Mrp2 on gene level and transportation activity together with bile-duct-like structure were more significantly evidenced in 3-D gel entrapment culture than in 2-D monolayer culture. In conclusion, the highly preserved Mrp2 in 3-D gel entrapped hepatocytes determines its high drug resistance to MTX. Gel entrapped hepatocytes could be useful for investigation of hepatic transportation and hepatotoxicity.  相似文献   

11.
Different fixation systems are used for fracture and defect treatment. A prerequisite for complication free healing is sufficient mechanical stability of the osteosynthesis. In vitro investigations offer the possibility of both analysing and assessing the pre-clinical fixation stability. Due to the complex loading environment in vivo, stiffness analysis should include a complete determination of the stiffness under standardised conditions. Based on a mathematical procedure to calculate the 3-D stiffness, a mechanical testing device for the 3-D loading of fixation systems was designed and integrated in the existing test set-up. The set-up consisted of a material testing machine to produce the necessary loads and an optical measurement device to detect the resulting inter-fragmentary movements. To validate the testing device, the 3-D stiffness matrices of different Ilizarov fixator configurations were determined and compared. The good reproducibility of the test was reflected in the small intra-individual variability of the stiffness components. A distinct direction dependence of the fixator stiffness was observed. Increasing the number of rings led to a stiffness increase of up to 50%, especially in bending. The presented testing device allows a complete standardised determination of the stiffness of different fixation systems. It considers the direction dependence of the stiffness and creates a prerequisite for a more direct implant comparison.  相似文献   

12.
The early factors inducing insulin resistance are not known. Therefore, we are interested in studying the secretome of the human visceral adipose tissue as a potential source of unknown peptides and proteins inducing insulin resistance. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry is a high-throughput proteomics technology to generate peptide and protein profiles (MS spectra). To obtain good quality and reproducible data from SELDI-TOF, many factors in the sample pretreatment and SELDI protocol should be optimized. To identify the optimal combination of factors resulting in the best and the most reproducible spectra, we designed an experiment where factors were varied systematically according to a fractional factorial design. In this study, seven protein chip preparation protocol factors were tested in 32 experiments. The main effects of these factors and their interactions contributing to the best quality spectra were identified by ANOVA. To assess the reproducibility, in a subsequent experiment the eight protocols generating the highest quality spectra were applied to samples in quadruplicates on different chips. This approach resulted in the development of an improved chip protocol, yielding higher quality peaks and more reproducible spectra.  相似文献   

13.
Nanotechnology, or systems/device manufacture at the molecular level, is a multidisciplinary scientific field undergoing explosive development. The genesis of nanotechnology can be traced to the promise of revolutionary advances across medicine, communications, genomics and robotics. Without doubt one of the greatest values of nanotechnology will be in the development of new and effective medical treatments (i.e., nanomedicine). This review focuses on the potential of nanomedicine as it specifically relates to (1) the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents; (2) developing novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine.  相似文献   

14.
A method for removal of fibroblasts from human tissue culture systems   总被引:4,自引:0,他引:4  
The phenomenon of fibroblast overgrowth is one of the major problems encountered during long-term culture of more slowly growing specialized cell types. A cell surface glycoprotein, Thy-1, which was originally found to be present on murine T-lymphocytes and brain cells, is also found to be present on only a few human cell types, mainly fibroblasts and neuronal cells. We have taken advantage of this fact, using a solid-phase immunoadsorption technique termed "panning", to rid our culture system (normal human keratinocytes) of contaminating dermal fibroblasts. A mouse monoclonal antibody raised against human brain Thy-1 was used to attach dermal fibroblasts to a goat anti-mouse immunoglobulin-coated plastic surface. By this method we were able to separate a 1:1 mixture of human dermal fibroblasts and keratinocytes with greater than 97.5% efficiency. Furthermore we have successfully removed dermal fibroblasts from naturally arising contaminated keratinocyte cultures, where the proportion of fibroblasts (less than 10%) was considerably less than that of the artificially mixed populations. These results compare favorably with those expected of the fluorescence-activated cell sorter (FACS) method of cell separation. In addition this technique is comparatively simple and inexpensive and is thought to be of use to other primary tissue culture systems (especially human) where contamination and subsequent overgrowth with fibroblasts remains a problem.  相似文献   

15.
A key factor in gene or drug therapy is the development of carriers that can efficiently reach targeted cells from a distal administration. In many gene/drug delivery studies, results obtained in 2D cultures fail to translate to similar results in vivo. In this work, we developed a perfusable 3D chamber for studying nanoparticle penetration and transport in cell-gel soft tissue cultures. The compartmented chamber is made of a polydimethylsiloxane (PDMS) top layer with the chamber features, created using micromachined lithography, bonded to a bottom glass coverslip. A solution of cells embedded in a hydrogel is loaded in the chamber between PDMS posts that serve as anchors to the cell-matrix at the gel-media interface. The chamber offers the following unique features: (i) rapid fabrication and simplicity in assembly, (ii) direct in situ cell imaging in a plane normal to the direction of flow or action, (iii) an easily configurable and controllable environment conducive cell culture under static or interstitial flow conditions, and (iv) facile recovery of live cells from chambers for post-experimental analysis. To assess the chamber, we delivered fluorescently labeled nanoparticles of three distinct sizes to cells-embedded Matrigels in the 3D chamber under flow and static conditions. Penetration of nanoparticles were enhanced under interstitial flow while live cell imaging and flow cytometry of recovered cells revealed particle size restrictions to efficient delivery. Although designed for delivery studies, the chamber is versatile and can be easily modified. Thus it may have broad applications for biological, tissue engineering, and therapeutic studies.  相似文献   

16.
留兰香组织培养及快速繁殖条件的优化   总被引:1,自引:0,他引:1  
以留兰香(Menthaspicata L.)茎尖为实验材料,对外植体消毒、不定芽增殖和试管苗移栽生根的最佳条件进行研究。结果表明,最佳外植体消毒方法为:用体积分数75%乙醇浸泡30s,再用1.0g·L-1HgCl2浸泡10min,培养7d后外植体生长状况良好。正交实验结果表明,在附加0.2mg·L-16-BA和0.02mg·L-1NAA的MS培养基中,留兰香不定芽的增殖倍数最高,试管苗生长状况最好。在含25mg·L-16-BA和50mg·L-1NAA的混合溶液中浸泡1h,移栽试管苗的生根率可达100%,且根较长。  相似文献   

17.
18.
Summary The objectives of this study were: (i) to develop a tissue culture technique for the evaluation of Fe efficiency in soybean, and (ii) to compare the laboratory technique with field Fe chlorosis scores. Nineteen genotypes that had low and high levels of Fe efficiency were evaluated in the laboratory and at five field locations. Friable callus was induced from epicotyl sections, weighed, and placed on two different modified Murashige and Skoog media; one low in -naphthaleneacetic acid and the other low in Fe. Callus growth was rated as lack of growth compared to respective controls. As an example, Fe-inefficient cultivars (Asgrow A3205 and Pride B216) had significantly reduced growth compared to Fe-efficient germ plasm lines (All and A14). Correlation between the laboratory and field chlorosis rating was highest for the low auxin medium (r 2 = 0.78), although correlation for the low Fe medium was also significant (r 2 = 0.72). These results show that in vitro evaluation for Fe efficiency can be a useful tool for plant breeders.  相似文献   

19.
Abstract

This paper describes the parameters recommended for rational design of amphiphile-based drug carriers. The main advantage of a carrier is its ability to modify the pharmacokinetics and biodistribution of the drug, so that the drug level at the target is sufficient for therapeutic benefits. Three parameters are described. Two of them, the drug-to-carrier partition coefficient (KyiC) and the rate of drug release from the carrier (kff), are related to drug-carrier interactions; the third one is the rate of carrier clearance (kc). We demonstrate that carrier performance for drugs associated with the carrier amphiphile(s) is determined to a large extent by Kc, while for drugs encapsulated in the aqueous phase of the carrier it is important that koff will be similar to kc These conclusions are based on two examples: (i) Amphotericin B as a drug associated with five dosage forms which represent different types of amphiphile-based carriers: micelles (Fungizone), stable micelle-like disks (Amphocil), a complex with phospholipids (ABPLC), liposomes (AmBisome), and a submicronized emulsion, (ii) Liposomal doxorubicin which consisted of either doxorubicin associated with the membrane of negatively-charged, fluid oligolamellar liposomes (L-DOX) or doxorubicin loaded by an ammonium sulfate gradient into small, unilamellar, rigid liposomes having steric stabilizing lipid grafted in their lipid bilayer, (S-DOX). To better understand what contributes to k, we also describe the effect of bilayer acyl chain composition and the role of precipitation of the drug inside the liposomes.  相似文献   

20.
Since the 1970s, the limitations of two dimensional (2D) cell culture and the relevance of appropriate three dimensional (3D) cell systems have become increasingly evident. Extensive effort has thus been made to move cells from a flat world to a 3D environment. While 3D cell culture technologies are meanwhile widely used in academia, 2D culture technologies are still entrenched in the (pharmaceutical) industry for most kind of cell-based efficacy and toxicology tests. However, 3D cell culture technologies will certainly become more applicable if biological relevance, reproducibility and high throughput can be assured at acceptable costs. Most recent innovations and developments clearly indicate that the transition from 2D to 3D cell culture for industrial purposes, for example, drug development is simply a question of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号