共查询到10条相似文献,搜索用时 0 毫秒
1.
Summary . In this article, we describe a Bayesian approach to the calibration of a stochastic computer model of chemical kinetics. As with many applications in the biological sciences, the data available to calibrate the model come from different sources. Furthermore, these data appear to provide somewhat conflicting information about the model parameters. We describe a modeling framework that allows us to synthesize this conflicting information and arrive at a consensus inference. In particular, we show how random effects can be incorporated into the model to account for between-individual heterogeneity that may be the source of the apparent conflict. 相似文献
2.
A Bayesian framework for the analysis of cospeciation 总被引:8,自引:0,他引:8
Huelsenbeck JP Rannala B Larget B 《Evolution; international journal of organic evolution》2000,54(2):352-364
Abstract.— Information on the history of cospeciation and host switching for a group of host and parasite species is contained in the DNA sequences sampled from each. Here, we develop a Bayesian framework for the analysis of cospeciation. We suggest a simple model of host switching by a parasite on a host phylogeny in which host switching events are assumed to occur at a constant rate over the entire evolutionary history of associated hosts and parasites. The posterior probability density of the parameters of the model of host switching are evaluated numerically using Markov chain Monte Carlo. In particular, the method generates the probability density of the number of host switches and of the host switching rate. Moreover, the method provides information on the probability that an event of host switching is associated with a particular pair of branches. A Bayesian approach has several advantages over other methods for the analysis of cospeciation. In particular, it does not assume that the host or parasite phylogenies are known without error; many alternative phylogenies are sampled in proportion to their probability of being correct. 相似文献
3.
The inositol (1,4,5)-trisphosphate receptor (IPR) plays a crucial role in calcium dynamics in a wide range of cell types, and is often a central feature in quantitative models of calcium oscillations and waves. We compare three mathematical models of the IPR, fitting each of them to the same data set to determine ranges for the parameter values. Each of the fits indicates that fast activation of the receptor, followed by slow inactivation, is an important feature of the model, and also that the speed of inositol trisphosphate (IP3) binding cannot necessarily be assumed to be faster than Ca2+ activation. In addition, the model which assumed saturating binding rates of Ca2+ to the IPR demonstrated the best fit. However, lack of convergence in the fitting procedure indicates that responses to step increases of [Ca2+] and [IP3] provide insufficient data to determine the parameters unambiguously in any of the models. 相似文献
4.
For a finite locus model, Markov chain Monte Carlo (MCMC) methods can be used to estimate the conditional mean of genotypic values given phenotypes, which is also known as the best predictor (BP). When computationally feasible, this type of genetic prediction provides an elegant solution to the problem of genetic evaluation under non-additive inheritance, especially for crossbred data. Successful application of MCMC methods for genetic evaluation using finite locus models depends, among other factors, on the number of loci assumed in the model. The effect of the assumed number of loci on evaluations obtained by BP was investigated using data simulated with about 100 loci. For several small pedigrees, genetic evaluations obtained by best linear prediction (BLP) were compared to genetic evaluations obtained by BP. For BLP evaluation, used here as the standard of comparison, only the first and second moments of the joint distribution of the genotypic and phenotypic values must be known. These moments were calculated from the gene frequencies and genotypic effects used in the simulation model. BP evaluation requires the complete distribution to be known. For each model used for BP evaluation, the gene frequencies and genotypic effects, which completely specify the required distribution, were derived such that the genotypic mean, the additive variance, and the dominance variance were the same as in the simulation model. For lowly heritable traits, evaluations obtained by BP under models with up to three loci closely matched the evaluations obtained by BLP for both purebred and crossbred data. For highly heritable traits, models with up to six loci were needed to match the evaluations obtained by BLP. 相似文献
5.
MacNab YC 《Biometrics》2003,59(2):305-315
We present Bayesian hierarchical spatial models for spatially correlated small-area health service outcome and utilization rates, with a particular emphasis on the estimation of both measured and unmeasured or unknown covariate effects. This Bayesian hierarchical model framework enables simultaneous modeling of fixed covariate effects and random residual effects. The random effects are modeled via Bayesian prior specifications reflecting spatial heterogeneity globally and relative homogeneity among neighboring areas. The model inference is implemented using Markov chain Monte Carlo methods. Specifically, a hybrid Markov chain Monte Carlo algorithm (Neal, 1995, Bayesian Learning for Neural Networks; Gustafson, MacNab, and Wen, 2003, Statistics and Computing, to appear) is used for posterior sampling of the random effects. To illustrate relevant problems, methods, and techniques, we present an analysis of regional variation in intraventricular hemorrhage incidence rates among neonatal intensive care unit patients across Canada. 相似文献
6.
7.
Bayesian analysis of factorial experiments by mixture modelling 总被引:3,自引:0,他引:3
8.
A hierarchical Bayesian regression model is fitted to longitudinal data on Haemophilus influenzae type b (Hib) serum antibodies. To estimate the decline rate of the antibody concentration, the model accommodates the possibility of unobserved subclinical infections with Hib bacteria that cause increasing concentrations during the study period. The computations rely on Markov chain Monte Carlo simulation of the joint posterior distribution of the model parameters. The model is used to predict the duration of immunity to subclinical Hib infection and to a serious invasive Hib disease. 相似文献
9.
10.
A simple population genetic model is presented for a hermaphrodite annual species, allowing both selfing and outcrossing. Those male gametes (pollen) responsible for outcrossing are assumed to disperse much further than seeds. Under this model, the pedigree of a sample from a single locality is loop-free. A novel Markov chain Monte Carlo strategy is presented for sampling from the joint posterior distribution of the pedigree of such a sample and the parameters of the population genetic model (including the selfing rate) given the genotypes of the sampled individuals at unlinked marker loci. The computational costs of this Markov chain Monte Carlo strategy scale well with the number of individuals in the sample, and the number of marker loci, but increase exponentially with the age (time since colonisation from the source population) of the local population. Consequently, this strategy is particularly suited to situations where the sample has been collected from a population which is the result of a recent colonisation process. 相似文献