首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relationship between DNA synthesis and protein accumulation in cell nucleus and cytoplasm has been investigated by the use of a combination of ultramicrointerferometric and ultramicrospectrophotometric methods. 5-Fluoro-2'-deoxyuridine (FUdR) inhibited DNA synthesis, resulting in inhibition of cell proliferation in G-1 and early S-phase. However, synthesis and accumulation of protein continued in the presence of FUdR, as indicated by a 54% increase in the average dry mass value per individual cell during 18-hour exposure to FUdR; due primarily to protein accumulation in the cytoplasm, the average cytoplasmic dry mass increased by as much as 85%, while the dry mass of the nucleus increased by only 21%. The dry mass values of individual nuclei were well-correlated to the nuclear DNA content throughout the period of exposure to FUdR. In contrast to the continued accumulation of protein in the cytoplasm during inhibition of DNA synthesis, protein accumulation in the nucleus was inhibited. When cells were released from inhibition of DNA synthesis by the addition of 2'-deoxythymidine, the nuclear DNA content and nuclear dry mass increased in near-synchrony, there being some evidence that DNA synthesis was initiated somewhat prior to initiation of increase in nuclear dry mass. Thus, it appears that DNA synthesis (or an increase in nuclear DNA content) is intimately related to the regulation of protein accumulation in the nucleus.  相似文献   

2.
3.
During the late phase of adenovirus infection, viral mRNA is efficiently transported from the nucleus to the cytoplasm while most cellular mRNA species are retained in the nucleus. Two viral proteins, E1B-55 kDa and E4orf6, are both necessary for these effects. The E4orf6 protein of adenovirus type 5 binds and relocalizes E1B-55 kDa, and the complex of the two proteins was previously shown to shuttle continuously between the nucleus and cytoplasm. Nucleocytoplasmic transport of the complex is achieved by a nuclear export signal (NES) within E4orf6. Mutation of this signal sequence severely reduces the ability of the E1B-55 kDa-E4orf6 complex to leave the nucleus. Here, we examined the role of functional domains within E4orf6 during virus infection. E4orf6 or mutants derived from it were transiently expressed, followed by infection with recombinant adenovirus lacking the E4 region and determination of virus yield. An arginine-rich putative alpha helix near the carboxy terminus of E4orf6 contributes to E1B-55 kDa binding and relocalization as well as to the synthesis of viral DNA, mRNA, and proteins. Further mutational analysis revealed that mutation of the NES within E4orf6 considerably reduces its ability to support virus production. The same effect was observed when nuclear export was blocked with a competitor. Further, a functional NES within E4orf6 contributed to the efficiency of late virus protein synthesis and viral DNA replication, as well as total and cytoplasmic accumulation of viral late mRNA. Our data support the view that NES-mediated nucleocytoplasmic shuttling strongly enhances most, if not all, intracellular activities of E4orf6 during the late phase of adenovirus infection.  相似文献   

4.
Polyomavirus major capsid protein VP1 synthesis was studied in infected primary baby mouse kidney cells. A standard curve of VP1 protein was used to quantitate VP1 in the cytoplasm and nucleus of infected cells during the time course of infection. Polyomavirus VP1 continued to be accumulated in the cytoplasm of the cells until 27 h postinfection, at which time the synthesis of VP1 leveled off. VP1 continued to accumulate in the nucleus of the infected cells throughout the course of infection. The presence of the six isospecies, A to F, of polyomavirus VP1 was also studied to determine the relative quantity of each species during the time course of infection. All six species were found in the cytoplasm and nucleus of infected cells at various times postinfection. However, the relative quantity of each species was different at early as compared with later times of infection. In addition, phosphorylated VP1 was found in isolated polyribosomes of infected cells, suggesting that phosphorylation of VP1 is a cotranslational modification. Examination of the effect of macromolecular synthesis on the transport of VP1 into the nucleus of infected baby mouse kidney cells as well as the rate of its nuclear accumulation during and after protein synthesis inhibition revealed that the continual transport and accumulation of VP1 in the nucleus required protein synthesis.  相似文献   

5.
Varicella-zoster virus (VZV) open reading frame 29 (ORF29) encodes a single-stranded DNA binding protein. During lytic infection, ORF29p is localized primarily to infected-cell nuclei, whereas during latency it appears in the cytoplasm of infected neurons. Following reactivation, ORF29p accumulates in the nucleus. In this report, we analyze the cellular localization patterns of ORF29p during VZV infection and during autonomous expression. Our results demonstrate that ORF29p is excluded from the nucleus in a cell-type-specific manner and that its cellular localization pattern may be altered by subsequent expression of VZV ORF61p or herpes simplex virus type 1 ICP0. In these cases, ORF61p and ICP0 induce nuclear accumulation of ORF29p in cell lines where it normally remains cytoplasmic. One cellular system utilized by ICP0 to influence protein abundance is the proteasome degradation pathway. Inhibition of the 26S proteasome, but not heat shock treatment, resulted in accumulation of ORF29p in the nucleus, similar to the effect of ICP0 expression. Immunofluorescence microscopy and pulse-chase experiments reveal that stabilization of ORF29p correlates with its nuclear accumulation and is dependent on a functional nuclear localization signal. ORF29p nuclear translocation in cultured enteric neurons and cells derived from an astrocytoma is reversible, as the protein's distribution and stability revert to the previous states when the proteasomal activity is restored. Thus, stabilization of ORF29p leads to its nuclear accumulation. Although proteasome inhibition induces ORF29p nuclear accumulation, this is not sufficient to reactivate latent VZV or target the immediate-early protein ORF62p to the nucleus in cultured guinea pig enteric neurons.  相似文献   

6.
7.
Retention of Se in CMT-13 cells increased with an increase in the concentration of selenite in the incubation medium, the duration of exposure, and the density of the culture. The enhanced toxicity of selenite coincided with a proportional increase in Se in both the cytoplasm and nucleus. About 90% of the accumulated Se was isolated with cytoplasmic macromolecules. Increased nuclear Se retention correlated with increased cytoplasmic Se retention. Greater quantities of cytosolic Se-containing proteins (74, 55, 41, 34, and 28 kDa) and a nuclear Se-containing protein (56 kDa) were detected as the quantity of Se within CMT-13 cells increased. These findings suggest that cellular retention and distribution of Se are determinanants of the degree of cellular growth inhibition caused by this trace element.  相似文献   

8.
Interferometric and photometric measurements have been made on HeLa cells, a strain of cells originally derived from a human carcinoma. From a study of the relations between successive physical measurements on individual cells, it was confirmed that, whereas the net syntheses of nuclear RNA and nuclear protein are closely associated during interphase, they are dissociated from DNA replication to a significant extent. These results on nuclear metabolism agree with others previously reported in cell strains derived from tumors; they contrast with results from freshly prepared normal cells, where the net syntheses of DNA, nuclear RNA, and protein are closely associated during interphase. Cytoplasmic measurements on HeLa cells showed that much of the net synthesis of cytoplasmic RNA is associated with DNA replication as in normal cells, and they failed to detect transfer from the nucleus of a stable RNA component synthesized independently from DNA replication. In auxiliary experiments, an inhibition of the onset of DNA synthesis was produced by a dose of X-rays; under these conditions it was shown that the major part of the accumulation of nuclear protein was independent of DNA replication and that the accumulation of nuclear RNA was equivalent to or slightly less than that of nuclear protein. About half the accumulation of cytoplasmic RNA was inhibited when DNA synthesis was blocked.  相似文献   

9.
10.
11.
The three canonical members of the family of homeodomain-interacting protein (HIP) kinases fulfill overlapping and distinct roles in cellular stress response pathways. Here we systematically compared all three endogenous HIPKs for their intracellular distribution and mutual interactions. The endogenous HIPKs are contained in high molecular weight complexes of ~700 kDa but do not directly interact physically. Under basal conditions, HIPK1 was mostly cytoplasmic, while HIPK3 was found in the nucleus and HIPK2 occurred in both compartments. Inhibition of nuclear export by leptomycin B resulted in the nuclear accumulation of mainly HIPK1 and HIPK2, indicating constitutive dynamic nucleocytoplasmic shuttling. The carcinogenic chemical stressor sodium arsenite caused the induction of HIPK2-dependent cell death and also resulted in a rapid and complete nuclear translocation of HIPK2, showing that the intracellular distribution of this kinase can undergo dynamic regulation.  相似文献   

12.
The polyclonal antiserum PG21 was used to detect androgen receptor (AR) protein in three motoneuronal pools of the male rat lumbar spinal cord. In gonadally intact, wild-type males, the spinal nucleus of the bulbocavernosus (SNB), dorsolateral nucleus (DLN), and retrodorsolateral nucleus (RDLN) all displayed immunolabeling of cell nuclei. The percentage of motoneurons displaying such labeling was highest in the SNB and lowest in the RDLN. This pattern of AR immunocytochemical labeling agrees well with previous steroid autoradiographic studies of androgen accumulation in the rat spinal cord. In contrast, virtually no motoneurons in any of the three pools displayed nuclear AR immunostaining in long-term gonadectomized males or in gonadally intact males carrying the Tfm mutation, which renders the AR incompetent. In gonadectomized males, labeling was restored in the SNB and DLN, but not the RDLN, 30 min after an injection of replacement testosterone. Eight hours of testosterone exposure restored immunolabeling in all three motor nuclei. Apparent cytoplasmic staining was seen in SNB motoneurons of untreated castrates and Tfm rats, but not intact rats, suggesting that AR residing in the cytoplasm translocates to the nucleus on binding to androgen in these motoneurons. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Nuclear localization of Sindbis virus nonstructural protein nsP2   总被引:1,自引:0,他引:1  
In early infection, approximately 10% of nonstructural protein nsP2 of Sindbis virus was transported into the nuclei of virus-infected BHK-21 cells. Nuclear asP2 was dominantly associated with nuclear matrix. During the course of infection, increasing amounts of nsP2 accumulated in the nuclear fraction. A prominent accumulation of nuclear nsP2 occurred early in infection, from 1 h to 3 h postinfection. Meanwhile. a weak NTPase activity was found to be associated with the immunocomplexed nsP2. Nuclear localization of nsP2 and its possible role were diseussed in relation to the inhibition of host macromolecular synthesis.  相似文献   

14.
Cao S  Liu X  Yu M  Li J  Jia X  Bi Y  Sun L  Gao GF  Liu W 《Journal of virology》2012,86(9):4883-4891
The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.  相似文献   

15.
Arginine methylation is a posttranslational protein modification catalyzed by a family of protein arginine methyltransferases (PRMT), the predominant member of which is PRMT1. Despite its major role in arginine methylation of nuclear proteins, surprisingly little is known about the subcellular localization and dynamics of PRMT1. We show here that only a fraction of PRMT1 is located in the nucleus, but the protein is predominantly cytoplasmic. Fluorescence recovery after photobleaching experiments reveal that PRMT1 is highly mobile both in the cytoplasm and the nucleus. However, inhibition of methylation leads to a significant nuclear accumulation of PRMT1, concomitant with the appearance of an immobile fraction of the protein in the nucleus, but not the cytoplasm. Both the accumulation and immobility of PRMT1 is reversed when re-methylation is allowed, suggesting a mechanism where PRMT1 is trapped by unmethylated substrates such as core histones and heterogeneous nuclear ribonucleoprotein proteins until it has executed the methylation reaction.  相似文献   

16.
In this study, we explored what effect inhibitors of the 26S proteasome have on cell cycle distribution and induction of apoptosis in human skin fibroblasts and colon cancer cells differing in their p53 status. We found that proteasome inhibition resulted in nuclear accumulation of p53. This was surprising because it is thought that the degradation of p53 is mediated by cytoplasmic 26S proteasomes. Nuclear accumulation of p53 was accompanied by the induction of both p21WAF1 mRNA and protein as well as a decrease in cells entering S phase. Interestingly, cells with compromised p53 function showed a marked increase in the proportion of cells in the G2-M phase of the cell cycle and an attenuated induction of apoptosis after proteasome inhibition. Taken together, our results suggest that proteasome inhibition results in nuclear accumulation of p53 and a p53-stimulated induction of both G1 arrest and apoptosis.  相似文献   

17.
The role of PKR activity in influenza virus-induced cell shut-off was studied by infection of PKR(+) or PKR(-) cell cultures and metabolic labeling in vivo. No differences in the synthesis of viral proteins or the decay of cellular protein synthesis were observed. To investigate the relevance of the inhibition of cellular pre-mRNA polyadenylation and nucleocytoplasmic transport in virus-induced shut-off, we carried out similar experiments with mutant viruses lacking C-terminal sequences of NS1 protein. No differences in the shut-off induced by mutant versus wild-type viruses were observed, indicating that these nuclear events are not relevant for shut-off. The analysis of cytoplasmic mRNA stability indicated that the accumulation of viral mRNA during the infection correlated with the progressive decay of cellular mRNA, in both the wild type and an NS1 deletion mutant.  相似文献   

18.
Synthesis of the 75K (75K indicates a moleculatr weight of 70,000 to 75,000) DNA binding protein, an early virus-coded protein in adenovirus 2-infected KB cells, and its regulation were studied by using a radioimmune precipitation inhibition assay. The protein was first detected at 4 h postinfection and accumulated at an expoential rate. An arrest of further synthesis (accumulation) was observed at 10 to 11 h postinfection, coinciding with the onset of synthesis of late virion proteins. In contrast, when the infected cells were treated with 25 mug of arabinosyl cytosine per ml to block viral DNA replication, the synthesis of 75K protein did not cease but continue for up to 36 h postinfection. The synthesis of 75K protein in cells after release from a cycloheximide block (2 to 9 h postinfection) was analyzed. Increased amounts of early adenovirus-specific mRNA accumulate in infected cells during a cycloheximide block (Parsons and Green, 1971). However, cycloheximide treatment did not produce increased levels of 75K protein, and an abrupt arrest of 75K protein formation was again observed at the time of synthesis of late virion proteins. Partition of the 75K protein between the nuclear and cytoplasmic fractions during the course of infection was studied. The 75K protein appeared first in the cytoplasm and then in the nucleus after a slight lag. Accumulation of the 75K protein continued both in the cytoplasm and nucleus, with higher levels being found in the cytoplasm.  相似文献   

19.
Killer lymphocytes utilize the synergy of a membranolytic protein, perforin, and the serine protease granzyme B (grB) to induce target cell apoptosis, however the mechanism of this synergy remains incompletely defined. We have previously shown that perforin specifically induces the redistribution of cytoplasmic grB into the nucleus of dying cells, however a causal role for nuclear targeting of grB in cell death has not been demonstrated. In the present study, we used confocal laser scanning microscopy (CLSM) to determine whether the nuclear accumulation of fluoresceinated (FITC-) grB precedes or is a consequence of apoptosis. Two distinct and mutually exclusive cellular responses were observed in FDC-P1 cells: (i) up to 50% of the cells rapidly accumulated FITC-grB in the nucleus (maximal at 7 min; t1/2 of 2 min) and underwent apoptosis; (ii) the remaining cells took up FITC-grB only into the cytoplasm, and escaped apoptosis. Under these conditions, DNA fragmentation was not observed for at least 13 min, indicating nuclear accumulation of grB preceded the execution phase of apoptosis. Furthermore, nuclear import of grB proceeded through an intact nuclear membrane, as the nuclei of cells whose cytoplasm was pre-loaded with 70 kDa FITC-dextran excluded dextran for up to 90 min while still undergoing apoptosis in response to perforin and grB. These findings indicated that perforin-induced nuclear accumulation of grB precedes apoptosis, and is not a by-product of caspase-induced nuclear membrane degradation. The cell membrane lesions formed by perforin in these experiments were not large enough to permit a 13 kDa protein (yeast cdk p13suc) access into the cytoplasm, but an 8 kDa protein (bacterial azurin) was able to equilibrate between the cytosol and the exterior. Therefore, transmembrane pores large enough to allow passive diffusion of grB (32 kDa) into the cell are not necessary for apoptosis. Rather, a perforin-dependent signal results in a redistribution of grB from the cytoplasm to the nucleus, where it may contribute to the nuclear changes associated with apoptosis.  相似文献   

20.
The subcellular distribution of the regulatory subunit of cAMP-dependent protein kinase in Saccharomyces cerevisiae cells was determined by subcellular fractionation and indirect immunofluorescence microscopy using the bcy1 mutant deficient in the regulatory subunit as control. The regulatory subunit of cAMP-dependent protein kinase showing cAMP-binding activity was identified as a single protein of 50 kDa by photoaffinity labeling and immunoblotting. The regulatory subunit was concentrated in a nuclear fraction in addition to a cytoplasmic fraction. By comparison of the regulatory subunit distribution with the DNA localization, the area detected by the indirect immunofluorescence was identified as the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号