首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dorner JW  Horn BW 《Mycopathologia》2007,163(4):215-223
A 2-year study was carried out to determine the effect of applying nontoxigenic strains of Aspergillus flavus and A. parasiticus to soil separately and in combination on preharvest aflatoxin contamination of peanuts. A naturally occurring, nontoxigenic strain of A. flavus and a UV-induced mutant of A. parasiticus were applied to peanut soils during the middle of each of two growing seasons using a formulation of conidia-coated hulled barley. In addition to an untreated control, treatments included soil inoculated with nontoxigenic A. flavus only, soil inoculated with nontoxigenic A. parasiticus only, and soil inoculated with a mixture of the two nontoxigenic strains. Plants were exposed to late-season drought conditions that were optimal for aflatoxin contamination. Results from year one showed that significant displacement (70%) of toxigenic A. flavus occurred only in peanuts from plots treated with nontoxigenic A. flavus alone; however, displacement did not result in a statistically significant reduction in the mean aflatoxin concentration in peanuts. In year two, soils were re-inoculated as in year one and all treatments resulted in significant reductions in aflatoxin, averaging 91.6%. Regression analyses showed strong correlations between the presence of nontoxigenic strains in peanuts and aflatoxin reduction. It is concluded that treatment with the nontoxigenic A. flavus strain alone is more effective than the A. parasiticus strain alone and equally as effective as the mixture. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

2.
A two-year study was conducted to evaluate the efficacy of three formulations of nontoxigenic strains of Aspergillus flavus and Aspergillus parasiticus to reduce preharvest aflatoxin contamination of peanuts. Formulations included: (1) solid-state fermented rice; (2) fungal conidia encapsulated in an extrusion product termed Pesta; (3) conidia encapsulated in pregelatinized corn flour granules. Formulations were applied to peanut plots in 1996 and reapplied to the same plots in 1997 in a randomized design with four replications, including untreated controls. Analysis of soils for A. flavus and A. parasiticus showed that a large soil population of the nontoxigenic strains resulted from all formulations. In the first year, the percentage of kernels infected by wild-type A. flavus and A. parasiticus was significantly reduced in plots treated with rice and corn flour granules, but it was reduced only in the rice-treated plots in year two. There were no significant differences in total infection of kernels by all strains of A. flavus and A. parasiticus in either year. Aflatoxin concentrations in peanuts were significantly reduced in year two by all formulation treatments with an average reduction of 92%. Reductions were also noted for all formulation treatments in year one (average 86%), but they were not statistically significant because of wide variation in the aflatoxin concentrations in the untreated controls. Each of the formulations tested, therefore, was effective in delivering competitive levels of nontoxigenic strains of A. flavus and A. parasiticus to soil and in reducing subsequent aflatoxin contamination of peanuts.  相似文献   

3.
Two hundred strains of the Aspergillus flavus group isolated from groundnuts (peanuts) growing in Israel were examined for their ability to produce mycotoxins in potato dextrose (PD) broth. Almost 77% of the isolates produced aflatoxin; aflatoxins B1 and B2 were formed by most of the isolates. Simultaneous production of aflatoxins of groups B and G was detected in only 0.5% of the isolates. Microscopic examination revealed that 98% of the isolates wereA. flavus and only 2%A. parasiticus. Cyclopiazonic acid (CPA) was detected in 22.5% of the isolates, including 3.5% that produced only CPA. Sterigmatocystin was detected in only 2% of the isolates and only one isolate produced aflatoxin simultaneously with CPA and sterigmatocysin. The dry weight (DW) of mycelium, 7 days after inoculating the medium, was between 71–110 mg/30 ml medium in more than 70% of the isolates. A general decrease in the pH was observed and 75% of the isolates reduced the pH to 4.5 or below. After 14 days, a small increase in DW and an increase in the pH toward neutrality was observed. On PD agar, 30% of the isolates produced sclerotia, including 5% that produced them profusely. No correlation between mycelial growth, changes in pH of the medium, sclerotium formation, and aflatoxin accumulation could be observed. The mycotoxigenic potential of theA. flavus strains isolated from groundnuts seems to be relatively high and may present a potential threat to human and animal health.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel. No. 3559-E.  相似文献   

4.
Summary A convenient miniassay for aflatoxin has been developed for cultures ofAspergillus flavus andA. parasiticus grown for 3–10 days in 10 ml of a coconut extract medium. The sensitivity of the assay, as measured by photofluorometry (365 nm maximum excitation; 445 nm maximum emission), is of the order of 0.01 M (3.12 ng/ml) for aflatoxin B1 dissolved in aqueous iodine (0.26 mM). High performance liquid chromatography, monitored by fluorometric analysis of both an aflatoxin B1 standard and selected culture filtrates, confirmed the sensitivity of the assay and indicated specificity for iodine-enhanced fluorescence of aflatoxin in the coconut extract medium. Thin layer chromatography further confirmed the aflatoxin titers and the specificity for enhancement of aflatoxins B1 and G1 in culture filtrates.Alabama Agricultural Experiment Station Journal No. 6-871297.  相似文献   

5.
Twenty-seven mature cotton bolls with Aspergillus flavus Link colonies naturally occurring on the surface of the boll or lint were collected in the field in Arizona along with their subtending stems and peduncles. Bolls inoculated through the carpel wall 30 days after anthesis were allowed to mature in the field and were collected in the same manner. The seed and stem and peduncle sections of each boll were surface-sterilized, plated on agar media and observed for A. flavus. Seventy-eight percent of the naturally contaminated bolls with A. flavus in the seed also had the fungus in the stem and peduncle, whereas only 31% of the naturally contaminated bolls with no A. flavus in the seed had the fungus in the stem or peduncle. This difference was significant (P=0.0125), indicating a positive relationship between seed infection and stem and peduncle infection. All of the bolls inoculated through the carpel wall had A. flavus in the seed, but only 11% of the stem and peduncle sections were infected, indicating that the fungus does not readily grow downward from the boll into the supporting stem or peduncle.This unidirectional pattern of movement (upward) was further substantiated in greenhouse experiments where cotton seedlings were inoculated at the cotyledonary leaf scar with A. flavus and plants were sequentially harvested, surface sterilized and plated. Aspergillus flavus was isolated from the cotyledonary leaf scar, flower buds, developing bolls, and stem sections in the upper portion of the plant. It was never isolated from roots or stem sections below the cotyledonary node, again indicating that the fungus does not readily move downward through the plant.  相似文献   

6.
Studies were conducted during 1994 and 1995 in the environmental control plot facility at the National Peanut Research Laboratory to determine the effect of different inoculum rates of biological control agents on preharvest aflatoxin contamination of Florunner peanuts. Biocontrol agents were nontoxigenic color mutants ofAspergillus flavusandAspergillus parasiticusthat were grown on rice for use as soil inoculum. Three replicate plots (4.0 × 5.5 m) were treated with 0, 2, 10, and 50 g/m of row (0, 20, 100, and 500 lb/acre, respectively) of an equal mixture of the color mutant-infested rice in 1994, and the same plots were retreated in 1995. Aflatoxin concentrations were determined by high performance liquid chromatographic analysis of all peanuts. Treatment means for total kernels in 1994 were 337.6, 73.7, 34.8, and 33.3 ppb for the 0, 2, 10, and 50 g/m treatments, respectively. Regression analysis indicated a trend toward lower aflatoxin concentrations with increasing rates of inoculum (R2= 0.40;P< 0.05). For the same repeated treatments in 1995 aflatoxin concentrations in total kernels averaged 718.3, 184.4, 35.9, and 0.4 ppb. Regression analysis revealed a stronger relationship between inoculum rate and aflatoxin concentrations (R2= 0.66;P< 0.05) in the second year of treatment. Compared with untreated controls, the 2, 10, and 50 g/m treatments produced respective reductions in aflatoxin of 74.3, 95.0, and 99.9% in the second year. The data indicated not only a treatment-related effect, but also that a higher degree of control might be achieved when plots or fields are retreated with biocontrol agents in subsequent years.  相似文献   

7.
Figs in an orchard were inoculated with an aflatoxigenicAspergillus flavus strain in two ways by spore injection or by dusting at three maturation stages: firm ripe, shrivelled, and dried. Fruits were individually examined for fungal development and analyzed for aflatoxin B1 (AF B1) after 2, 4, 6, 8 and 10 days. Fruit injected at the first stage showed fungal development and AF B1 contamination within two days. The toxin level increased sharply to 1 ppm after 10 days. The mean level of AF B1 (284.75 ng/g) was significantly higher than those observed in other conditions. Figs dusted at the first stage showed only a tiny fungal growth even after 10 days. AF B1 appeared after 6 days with a low frequency (35%), mean level (7.6 ng/g) and a great variation among figs (0.22–15 ng/g). Among fruits inoculated during the shrivelled fig and dried fruit stages, no fungal growth was observed and AF B1 was detected with a lower incidence in association with low mean levels (less than 1.25 ng/g). Methods of prevention of aflatoxin contamination at the critical step, the firm ripe stage, are discussed.  相似文献   

8.
A two-year factorial experiment was utilized to test plants field-inoculated singly and in combination withAspergillus flavus andFusarium moniliforme. Pinbar inoculations were made through the husks with conidial suspensions, and 10-ear maize samples were harvested at 60 days post-silking for aflatoxin determinations. When ears were inoculated with both fungi simultaneously,F. moniliforme reduced aflatoxin formation byA. flavus isolate NRRL 3357 by approximately two-thirds.F. moniliforme had no significant effect on naturally occurring aflatoxin contamination byA. flavus. This may be due to the timing of infection by both fungi in the field. In nature,A. flavus andF. moniliforme respond differently to the environment, offering one explanation of whyF. moniliforme did not measurably affect the other fungus.  相似文献   

9.
Four agar media used to isolate aflatoxin producing fungi were compared for utility in isolating fungi in theAspergillus flavus group from agricultural soils collected in 15 fields and four states in the southern United States. The four media wereAspergillus flavus andparasiticus Agar (AFPA, 14), the rose bengal agar described by Bell and Crawford (BCRB; 3), a modified rose bengal agar (M-RB), and Czapek's-Dox Agar supplemented with the antibiotics in BC-RB (CZ-RB). M-RB was the most useful for studying the population biology of this group because it permitted both identification of the greatest number ofA. flavus group strains and growth of the fewest competing fungi. M-RB supported an average of 12% moreA. flavus group colonies than the original rose bengal medium while reducing the number of mucorales colonies and the number of total fungi by 99% and 70%, respectively. M-RB was successfully employed to isolate all three aflatoxin producing species,A. flavus, A. parasiticus andA. nomius, and both the S and L strains ofA. flavus. M-RB is a defined medium without complex nitrogen and carbon sources (e.g. peptone and yeast extract) present in BC-RB. M-RB should be useful for studies on the population biology of theA. flavus group.Abbreviations M-RB Modified Rose Bengal Agar - CZ-RB Czapeks Rose Bengal Agar - BC-RB Bell and Crawford's Rose Bengal Agar - AFPA Aspergillus flavus andparasiticus agar  相似文献   

10.
The use of nontoxigenic strains of Aspergillus flavus and A. parasiticus in biological control effectively reduces aflatoxin in peanuts when conidium-producing inoculum is applied to the soil surface. In this study, the movement of conidia in soil was examined following natural rainfall and controlled precipitation from a sprinkler irrigation system. Conidia of nontoxigenic A. flavus and A. parasiticus remained near the soil surface despite repeated rainfall and varying amounts of applied water from irrigation. In addition, rainfall washed the conidia along the peanut furrows for up to 100 meters downstream from the experimental plot boundary. The dispersal gradient was otherwise very steep upstream along the furrows and in directions perpendicular to the peanut rows. The retention of biocontrol conidia in the upper soil layers is likely important in reducing aflatoxin contamination of peanuts and aerial crops such as corn and cottonseed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Colonization of barley grain by Aspergillus flavus and formation of aflatoxin B1 in the presence of Penicillium verrucosum, Fusarium sporotrichioides, and Hyphopichia burtonii were studied over a three-week period in all combinations of 20 or 30 °C and 0.97, 0.95 or 0.90 aw. Grain colonization was assessed initially by observing hyphal extension on the grain surface, using scanning electron microscopy, and then from the proportion of seeds infected and numbers of colony forming units (cfu) formed. Aflatoxin b1 concentrations were determined by enzyme linked immunosorbent assay using a monoclonal antibody. These studies showed that interaction between A. flavus and other fungi in paired culture had different effects on both colonization and aflatoxin formation depending on the species involved and environmental conditions. Germination of A. flavus spores was unaffected by the presence of other species on the grain surface. Subsequently, three principal patterns of A. flavus colonization of barley grain were observed through the incubation period in the presence of other fungal species: (a) colonization unaffected by the presence of other species; (b) colonization initially slower in the presence of other species but later differing little from pure cultures; and (c) colonization adversely affected by the presence of other species. Five main patterns of aflatoxin B1 production were observed relative to pure culture but with no consistent relationship with species, aw, temperature or incubation period; (a) little changed; (b) increased slowly; (c) decreased; (d) enhanced; and (e, f) increased initially but later decreased to (e) the same level as in pure culture or (f) to less than in pure culture. Generally, production of aflatoxin B1 by A. flavus was less than in pure culture but sometimes was changed only slightly by the presence of P. verrucosum, F. sporotrichioides or H. burtonii or was temporarily enhanced.  相似文献   

12.
A new method for growingAspergllius flavus for experimental studies is presented. The system consists of a humidified vial with a thick septum pierced by a pin on which a glass fiber disc is affixed. The disc contains the test solution and inoculum plus medium. The method has been used to assess the effect of variations in culture conditions on production of aflatoxin B1 (AFB1). The AFB1 level was affected by the amount of medium placed on the disc and type of disc material. The results for different types of glass fiber and quartz discs were compared with AFB1 produced by fungus grown in liquid medium or on paper discs. When compared to a liquid medium culture there was a 15 to 20-fold increase in AFB1 for one type of disc. Incubations with less than 14 µl of medium gave satisfactory results. A crude phosphatidylcholine preparation at a concentration of 0.7% of the medium resulted in a 4-fold increase in AFB1.Abbreviations AFB1 aflatoxin B1 - CV coefficient of variation - PC phosphatidylcholine - SD suspended disc  相似文献   

13.
Selected bacterial strains isolated from the region of peanut pod development (geocarposphere) and two additional bacterial strains were screened as potential biological control agents against Aspergillus flavus invasion and subsequent aflatoxin contamination of peanut in laboratory, greenhouse, and field trials. All 17 geocarposphere strains tested delayed invasion of young roots and reduced colonization by the fungus in a root-radicle assay used as a rapid laboratory prescreen. In a greenhouse study, seven bacterial strains significantly reduced pod colonization by A. flavus compared to the control. In a field trial, conducted similarly to the greenhouse assay, pods sampled at mid-peg from plants seed-treated with suspensions of either 91A-539 or 91A-550 were not colonized by A. flavus, and the incidence of pods invaded from plants treated with either 91A-539 or 91A-599 was consistently lower than nonbacterized plants at each of five sampling dates. At harvest, 8 geocarposphere bacterial strains significantly lowered the percentage of pods colonized (> 51%) compared to the control. Levels of seed colonization ranged from 1.3% to 45% and did not appear related to aflatoxin concentrations in the kernels.  相似文献   

14.
15.
Mycotoxins in Australia: biocontrol of aflatoxin in peanuts   总被引:3,自引:0,他引:3  
Pitt JI  Hocking AD 《Mycopathologia》2006,162(3):233-243
The major mycotoxin problem in Australia is the formation of aflatoxins in peanuts by Aspergillus flavus and A. parasiticus. This is controlled by good farm management practice, segregation into grades on aflatoxin content at intake to shelling facilities, colour sorting and aflatoxin assays. A second problem is the potential presence of ochratoxin A in grapes and grape products, resulting from infection by Aspergillus carbonarius. Good quality control before and during wine making ensures ochratoxin A is kept to very low levels, but in dried vine fruit, ochratoxin A levels may be higher. Biocontrol by competitive exclusion has been developed as the most promising means of controlling aflatoxins in peanuts. Some details of the process are given, including some basic laboratory experiments.  相似文献   

16.
Thirty-two isolates of Aspergillus flavus were obtained from various sources in Hungary. All isolates were morphologically identified as A. flavus and three atypical variants were confirmed as A. flavus by comparing their DNA with an ex type culture of A. flavus. None of these isolates produced aflatoxins when tested on coconut agar or grown on rice medium and culture extracts examined by thin layer chromatography. Also, none of the isolates converted sterigmatocystin, O-methyl sterigmatocystin, norsolorinic acid, or sodium acetate to aflatoxin. However, 59% of the isolates produced cyclopiazonic acid based on thin layer chromatographic analysis of culture extracts. The isolates that lack the ability to produce both aflatoxin and cyclopiazonic acid are potential candidates for use in bicontrol studies.  相似文献   

17.
Aspergillus niger or Aspergillus tamarii when grown as mixed cultures with toxigenic A. flavus inhibits biosynthesis of aflatoxin by A. flavus, owing primarily to its ability to produce inhibitors of aflatoxin biosynthesis and to their ability to degrade aflatoxin. Gluconic acid partly prevents aflatoxin production. The other factors such as changes in pH of the medium and the effect on the growth of A. flavus have no role in imparting capabilities to these cultures to inhibit aflatoxin production by A. flavus.  相似文献   

18.
Bacterial isolates were collected from the geocarposphere, rhizosphere, and root-free soil of field grown peanut (Arachis hypogaea L.) at three sample dates, and the isolates were identified by analysis of fatty acid methyl-esters to determine if qualitative differences exist among the bacterial microflora of these zones. Five bacterial genera were associated with isolates from soil, while pod and root isolates constituted 16 and 13 genera, respectively, indicating that bacterial diversity was higher in the rhizosphere and geocarposphere than in soil. The dominant (most frequently identified) genus across all three samples dates was Flavobacterium, for pods, Pseudomonas for roots, and Bacillus, for root-free soil. Sixteen bacterial taxa were only isolated from the geocarposphere, 7 only from the rhizosphere, and 5 only from soil. These results show that specific bacterial taxa are preferentially adapted to colonization of the geocarposphere and suggest that the soil, rhizosphere, and geocarposphere constitute three distinct ecological niches. Bacteria which colonize the geocarposphere should be examined as potential biological control agents for pod-invading fungi such as the toxigenic strains of Aspergillus flavus and A. parasiticus.  相似文献   

19.
Aflatoxins are polyketide-derived, toxic, and carcinogenic secondary metabolites produced primarily by two fungal species, Aspergillus flavus and A. parasiticus, on crops such as corn, peanuts, cottonseed, and treenuts. Regulatory guidelines issued by the U.S. Food and Drug Administration (FDA) prevent sale of commodities if contamination by these toxins exceeds certain levels. The biosynthesis of these toxins has been extensively studied. About 15 stable precursors have been identified. The genes involved in encoding the proteins required for the oxidative and regulatory steps in the biosynthesis are clustered in a 70 kb portion of chromosome 3 in the A. flavus genome. With the characterization of the gene cluster, new insights into the cellular processes that govern the genes involved in aflatoxin biosynthesis have been revealed, but the signaling processes that turn on aflatoxin biosynthesis during fungal contamination of crops are still not well understood. New molecular technologies, such as gene microarray analyses, quantitative polymerase chain reaction (PCR), and chromatin immunoprecipitation are being used to understand how physiological stress, environmental and soil conditions, receptivity of the plant, and fungal virulence lead to episodic outbreaks of aflatoxin contamination in certain commercially important crops. With this fundamental understanding, we will be better able to design improved non-aflatoxigenic biocompetitive Aspergillus strains and develop inhibitors of aflatoxin production (native to affected crops or otherwise) amenable to agricultural application for enhancing host-resistance against fungal invasion or toxin production. Comparisons of aflatoxin-producing species with other fungal species that retain some of the genes required for aflatoxin formation is expected to provide insight into the evolution of the aflatoxin gene cluster, and its role in fungal physiology. Therefore, information on how and why the fungus makes the toxin will be valuable for developing an effective and lasting strategy for control of aflatoxin contamination.  相似文献   

20.
In Kanagawa Prefecture, located in central Japan, aflatoxin-producingAspergillus flavus was isolated in 4 (2.5%) of 160 field soil samples. In the 4 fields, whose soil contained aflatoxin-producingA. flavus, the annual average temperature of the sampling sites of the soil ranged from 13.8 to 15.1°C. Of all the isolated strains of aflatoxin-producingA. flavus, 4 strains, isolated from a single soil sample, produced large amounts of aflatoxin B1 and B2 when incubated in coconut agar, peanut agar, peanuts or trilaurin-added rice, although they did not produce aflatoxin when incubated in rice, yeast extract-sucrose broth or sucrose-low salts broth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号