首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water loss rates in dry air at 30°C and cuticular lipid/hydrocarbon composition were determined for three species (eight populations) of tiger beetles (Cicindela oregona, C. tranquebarica and C. obsoleta). The highest water loss rates were found in C. oregona (0.049 to 0.052 mg cm−2h−1 mmHg−1), a species active in spring and fall along water courses in Arizona, while the lowest rates were exhibited by C. obsoleta (0.022 to 0.028 mg cm−2h−1 mmHg−1), a summer-active species that inhabits dry grasslands. Water loss rates for C. tranquebarica were closer to those of C. obsoleta even though C. tranquebarica often coexists with C. oregona. Hydrocarbons were an important constituent of the cuticular lipids of all three species; smaller quantities of wax and cholesterol esters, triacylglycerols, free fatty acids, alcohols, and cholesterol were also detected. C. obsoleta contained the greatest amount of hydrocarbon per surface area. All of its hydrocarbon molecules were saturated, with branched components accounting for about 60% of the total fraction. Saturated (primarily n-alkanes) and unsaturated (n-alkenes) molecules were present in both C. oregona, which contained the lowest hydrocarbon surface density, and C. tranquebarica. The hydrocarbon composition of the three species is discussed in terms of its contribution to the epicuticular waterproofing barrier and its potential use as a chemotaxonomic tool.  相似文献   

2.
Summary The temperatures at which chlorophyll fluorescence yield is substantially increased and the temperatures at which the quantum yield for CO2 uptake is irreversibly inhibited were measured for three shortgrass prairie species. The experimental taxa include, a cool season species (Agropyron smithii), a warm season species (Bouteloua gracilis), and a species which grows throughout the cool and warm seasons (Carex stenophylla). Agropyron smithii exhibited lower high temperature damage thresholds (43°C in cool grown plants, 46°C in warm grown plants), relative to the other two species. Bouteloua gracilis exhibited the highest tolerance to high temperature, with threshold values being 44–49°C for cool grown plants and 53–55°C for warm grown plants. Carex stenophylla exhibited threshold values which were intermediate to the other two species (43–47°C for cool grown plants, and 51–53°C for warm grown plants). Seasonal patterns in the fluorescence rise temperatures of field grown plants indicated acclimation to increased temperatures in all three species. The results demonstrate a correlation between the high temperature thresholds for damage to the photosynthetic apparatus, and in situ seasonal phenology patterns for the three species.  相似文献   

3.
Hygrophilic soil animals, like enchytraeids, overwintering in frozen soil are unlikely to base their cold tolerance on supercooling of body fluids. It seems more likely that they will either freeze due to inoculative freezing, or dehydrate and adjust their body fluid melting point to ambient temperature as has been shown for earthworm cocoons and Collembola. In the present study we tested this hypothesis by exposing field-collected adult Fridericia ratzeli from Disko, West Greenland, to freezing temperatures under various moisture regimes. When cooled at –1 °C min–1 under dry conditions F. ratzeli had a mean temperature of crystallisation (Tc) of –5.8 °C. However, when exposed to temperatures above standard Tc for 22 h, at –4 °C, most individuals (90%, n= 30) remained unfrozen. Slow cooling from –1 °C to –6 °C in vials where the air was in equilibrium with the vapour pressure of ice resulted in freezing in about 65% of the individuals. These individuals maintained a normal body water content of 2.7–3.0 mg mg–1 dry weight and had body fluid melting points of about –0.5 °C with little or no change due to freezing. About 35% of the individuals dehydrated drastically to below 1.1 mg mg–1 dry weight at –6 °C, and consequently had lowered their body fluid melting point to ca. –6 °C at this time. Survival was high in both frozen and dehydrated animals at –6 °C, about 60%. Approximately 25% of the animals (both frozen and dehydrated individuals) had elevated glucose concentrations, but the mean glucose concentration was not increased to any great extent in any group due to cold exposure. The desiccating potential of ice was simulated using aqueous NaCl solutions at 0 °C. Water loss and survival in this experiment were in good agreement with results from freezing experiments. The influence of soil moisture on survival and tendency to dehydrate was also evaluated. However, soil moisture ranging between 0.74 g g–1 and 1.15 g g–1 dry soil did not result in any significant differences in survival or frequency of dehydrated animals even though the apparent wetness and structure of the soil was clearly different in these moisture contents.Abbreviations DW dry weight - FW fresh weight - MP melting point - RH relative humidity - Tc crystallisation temperatures - WC water contentCommunicated by I.D. Hume  相似文献   

4.
The distribution and abundance of benthic algae and macroinvertebrates were examined along a natural thermal gradient formed by hot springs in Little Geysers Creek, Sonoma Co., California, USA. Maximum water temperatures ranged from 52 °C at the uppermost station to 23 °C at a station 400 m downstream. Benthic chlorophyll a decreased exponentially from 2.5 g m–2 at 52 °C to less than 0.1 g m–2 at 23 °C, a pattern of decline also exhibited by algal phaeophytin. Blue-green algae dominated at higher temperatures but were replaced by filamentous green algae and diatoms at lower temperatures.Macroinvertebrates were absent at temperatures 45 °C; the highest density (> 150 000 m–2, mainly Chironomidae) occurred at 34 °C, whereas biomass was highest (4.6 g m–2, as dry weight) at 23 °C and species richness (15 species) was highest at 27 °C. The two predominant macroinvertebrate populations (the midge Tanytarsus sp. and the caddisfly Helicopsyche borealis) occurred at sites that were several degrees below their lethal thermal threshold, suggesting that a temperature buffer is maintained.  相似文献   

5.
One-year-old tree seedlings were incubated in a greenhouse from April to July, under natural daylight conditions, with their root systems at constant temperatures of 5, 10, 15, 20, 25, 30 and 35 °C and with the above ground parts kept at a constant air temperature of 18–20 °C. The course of height growth, total mass increment, root, shoot and leaf weight as well as leaf areas were measured. The results indicate that clear differences exist in the optimal root zone temperatures for various growth parameters in different tree species. Pinus sylvestris had a maximal height increment at about 5–10 °C and maximal total mass increment at 15 °C root temperature. In contrast, the optimum for Quercus robur was at 25 °C. Tilia cordata and Fagus sylvatica had their optima for most growth parameters at 20 °C. The root temperature apparently indirectly influenced photosynthesis (dry weight accumulation) and respiration loss. From the observed symptoms and indications in the literature it seems probable that a change in hormone levels is involved as the main factor in the described effects. Variation of root temperature had only an insignificant effect on bud burst and the time at which the shoots sprouted. Apparently species of northern origin seem to have lower root temperature optima than those of more southern origin. This is to be verified by investigation of other tree species.  相似文献   

6.
Studies on the occurrence of aquatic hyphomycetes were carried out in Panekal sulfur spring in the Western Ghats, India by incubation of leaf litter and analysis of natural foam and of induced foam. Sampling was done once every three months over a period of two years from September 1989 to June 1991. The temperature, pH, dissolved oxygen, and sulfide content of water were also measured. No fungi were observed within the spring, whereas 16 species belonging to 13 genera were isolated from two outflow sites of the stream. The percent frequency of Triscelophorus monosporus was high (24.0%). The temperature of water in the spring ranged between 30.0 and 38.5°C and the sulfide content between 3.2 and 4.3 mg 1–1. Studies showed that sulfide water (4.0 mg 1–1). from the spring inhibited the growth of the colonies of Dactylella aquatica, Phalangispora constricta, Tetracladium setigerum, Vermispora cauveriana, and Wiesneriomyces laurinus. When the leaves colonized by aquatic hyphomycetes were incubated at different temperatures in sulfur-spring water and stream water separately, sporulation was not observed in any of the fungi at and above 35°C except Phalangispora constricta, which could sporulate at 35°C. At lower temperatures (15–30°C) relatively fewer species were found to sporulate in sulfur-spring water than in stream water. Correspondence to: K.M. Kaveriappa  相似文献   

7.
Three eulittoral algae(Ulva lactuca, Porphyra umbilicalis, Chondrus crispus) and one sublittoral alga(Laminaria saccharina) from Helgoland (North Sea) were cultivated in a flow-through system at different temperatures, irradiances and daylengths. In regard to temperature there was a broad optimum at 10–15° C, except inP. umbilicalis, which grew fastest at 10 °C. A growth peak at this temperature was also found in four of 17 other North Sea macroalgae, for which the growth/temperature response was studied, whereas 13 of these species exhibited a growth optimum at 15 °C, or a broad optimum at 10–15 °C. Growth was light-saturated inU. lactuca, L. saccharina andC. crispus at photon flux densities above 70 µE m–2s–1, but inP. umbilicalis above 30 µE m–2s–1. Growth rate did not decrease notably in the eulittoral species after one week in relatively strong light (250 µE m–2s–1), but by about 50 % in the case of the sublittoralL. saccharina, as compared with growth under weak light conditions (30 µE m–2s–1). In contrast, chlorophyll content decreased in the sublittoral as well as in the eulittoral species, and the greatest change in pigment content occurred in the range 30–70 µE m–2s–1. Growth rate increased continuously up to photoperiods of 24 h light per day inL. saccharina andC. crispus, whereas daylength saturation occurred at photoperiods of more than 16 h light per day inU. lactuca andP. umbilicalis.  相似文献   

8.
Synopsis Two groups of coho salmon,Oncorhynchus kisutch, were raised under identical regimes to test the hypothesis that the group from a stream with lower and less variable temperatures would have a lower and less variable preferred temperature than would the group from a stream with warmer and more variable temperatures. The preferred (modal) temperatures in an electronic shuttlebox of coho salmon young from a relatively cool, groundwater-fed stream were slightly lower and less variable than those of young from a warmer and more heterothermal stream (mean = 9.6° C, range: 6–16° C vs. mean = 11.6° C, range: 7–21° C). However, there was a great deal of variation within and among individual fish. While some genetic variation in thermal preference may exist, the species seems best characterized as tolerant of relatively large temperature fluctuations.  相似文献   

9.
The relationship between distributional boundaries and temperature responses of some Northeast American and West European endemic and amphiatlantic rhodophytes was experimentally determined under varying regimes of temperature, light, and daylength. Potentially critical temperatures, derived from open ocean surface summer and winter isotherms, were inferred from distributional data for each of these algae. On the basis of the distributional data the algae fall within the limits of three phytogeographic groups: (1) the Northeast American tropical-to-temperate group; (2) the warm-temperate Mediterranean Atlantic group; and (3) the amphiatlantic tropical-to-warm temperate group. Experimental evidence suggests that the species belonging to the northeast American tropical-to-temperate group(Grinnellia americana, Lomentaria baileyana, andAgardhiella subulata) have their northern boundaries determined by a minimum summer temperature high enough for sufficient growth and/or reproduction. The possible restriction of 2 species (G. americana andL. baileyana) to the tropical margins may be caused by summer lethal temperatures (between 30 and 35 °C) or because the gradual disintegration of the upright thalli at high temperatures (>30 °C) promotes an ephemeral existence of these algae towards their southern boundaries. Each of the species have a rapid growth and reproductive potential between 15–30 °C with a broad optimum between 20–30 °C. The lower limit of survival of each species was at least 0 °C (tested in short days only). Growth and reproduction data imply that the restrictive distribution of these algae to the Americas may be due to the fact that for adequate growth and/or reproduction water temperatures must exceed 20 °C. At temperatures 15 °C reproduction and growth are limited, and the amphiatlantic distribution through Iceland would not be permitted. On the basis of experimental evidence, the species belonging to the warm-temperate Mediterranean Atlantic group(Halurus equisetifolius), Callophyllis laciniata, andHypoglossum woodwardii), have their northern boundaries determined by winter lethal temperatures. Growth ofH. equisetifolius proceeded from 10–25 °C, that ofC. laciniata andH. woodwardii from 5–25 °C, in each case with a narrow range for optimal growth at ca. 15 °C. Tetrasporelings ofH. woodwardii showed limited survival at 0 °C for up to 4 d. For all members of the group tetrasporangia occurred from 10–20 °C. The southern boundary ofH. equisetifolius andC. laciniata is a summer lethal temperature whereas that ofH. woodwardii possibly is a winter growth and reproduction limit. Since each member of this group has a rather narrow growth and survival potential at temperatures <5 °C and >20 °C, their occurrence in northeast America is unlikely. The (irregular) distribution ofSolieria tenera (amphiatlantic tropical-to-warm temperate) cannot be entirely explained by the experimental data (possibly as a result of taxonomic uncertainties).Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

10.
Summary Three species of the barrel cactus Copiapoa (C. cinerea, C. columna-alba, C. haseltoniana) were investigated in their native habitats along the cool, arid coastal regions of the Atacama Desert in northern Chile. All species orient towards the north with a high degree of precision. Two consequences of adaptive value result from this northerly orientation. First, tissue temperatures of the meristematic and floral regions on the tip of the cactus receive high solar radiation loads which result in high temperatures (30°–40°C) relative to air temperatures (15°–20°) during winter and spring months when adequate soil moisture for growth is available. Second, absorption of solar radiation by the sides of the cactus is minimized, which reduces both the potential detrimental effects of light and heat load on the cactus and probably balances daily quanta absorbed for photosynthesis with nighttime CO2 uptake rates during drought stress periods.  相似文献   

11.
Walker, D. I. and Cambridge, M. L. 1994. An experimental assessment of the temperature responses of two sympatric seagrasses, Amphibolis antarctica and Amphibolis griffithii, in relation to their biogeography.Seedlings of the viviparous seagrasses, Amphibolis antarctica (Labill.) Sonder & Aschers. and Amphibolis griffithii (Black) den Hartog, were grown in seawater cultures at temperatures of 10–30 °C. This temperature range exceeded the range of temperatures occurring in habitats where Amphibolis grows.All seedlings of both species survived at 15 °C, and all A. antarctica at 10 and 20 °C. There was some mortality at 25 °C, but more in A. griffithii than in A. antarctica. All seedlings showed marked senescence at 30 °C within 2 weeks, and all seedlings of both species were dead at this temperature in 6 weeks. Leaf production rates were different at different temperatures for each species, but were high across the 15–25 °C temperature range for both species. Given the time of release of seedlings from parent plants (winter), these results are consistent with the observed distribution of adult plants, and so the more restricted range of A. griffithii can be explained partially by its' response to temperature in culture. These results do not explain the absence of both Amphibolis species from the east coast of Australia, which may be a consequence of habitat availability.  相似文献   

12.
Summary Respiratory energy losses in five species of ciliated protozoa, Tetrahymena pyriformis Ehrenberg, Vorticella microstoma Ehrenberg, Paramecium aurelia Ehrenberg, Spirostomum teres Claparède and Lachmann and Frontonia leucas Ehrenberg, were investigated at 8.5° C, 15° C and 20° C using Cartesian diver microrespirometry. Q 10 values of 1.15–2.24 were found for four of the species between 8.5–15° C, while in S. teres a Q 10 of 12.98 occurred between these temperatures. Between 15–20° C T. pyriformis and P. aurelia had Q 10 values of 3.73 and 1.56, respectively. Linear double log regressions of oxygen consumption vs. dry weight were derived at each temperature and regression coefficients (b) of 0.2723 (8.5° C), 0.4364 (15° C) and 0.4171 (20° C) were obtained. The results are explained and discussed in relation to previous work on the energetics of ciliated protozoa.  相似文献   

13.
Synopsis Spawning of razorback suckers,Xyrauchen texanus, in Lake Mohave occurred from 10–22°C and larvae were collected at water temperatures from 10–15°C in 1982 and 1983. In the laboratory, hatching success was similar from 12–20°C, but reduced hatching success was found at 10°C while none hatched a 8°C. Development rate and oxygen consumption were positively related to incubation temperature. Direct effects of ambient Lake Mohave water temperatures on hatching success of razorback sucker embryos are considered minimal. Historical spawning temperatures for the species are hypothesized based upon successful incubation temperatures and comparison to the white sucker,Catostomus commersoni.  相似文献   

14.
Summary Single fast fibres and small bundles of slow fibres were isolated from the trunk muscles of an Antarctic (Notothenia neglecta) and various warm water marine fishes (Blue Crevally,Carangus melampygus; Grey Mullet,Mugil cephalus; Dolphin Fish,Coryphaena hippurus; Skipjack-tuna,Katsuwonus pelamis and Kawakawa,Euthynuus affinis). Fibres were chemically skinned with the nonionic detergent Brij 58.For warm water species, maximum Ca2+-activated tension (P 0) almost doubled between 5–20°C with little further increase up to 30°C. However, when measured at their normal body temperatures,P 0 values for fast fibres were similar for all species examined, 15.7–22.5 N · cm–2. Ca2+-regulation of contraction was disrupted at temperatures above 15°C in the Antarctic species, but was maintained at up to 30°C for warm water fish.Unloaded (maximum) contraction speeds (V max) of fibres were determined by the slacktest method. In general,V max was approximately two times higher in white than red muscles for all species studied, except Skipjack tuna. For Skipjack tuna,V max of superficial red and white fibres was similar (15.7 muscle lengths · s–1 (L 0 · s–1)) but were 6.5 times faster than theV max of internal red muscle fibres (2.4±0.2L 0 · s–1) (25°C). V max forN. neglecta fast fibres at 0–5°C (2–3L 0 · s–1) were similar to that of warm water species measured at 10–20°C. However, when measured at their normal muscle temperatures, theV max for the fast muscle fibres of the warm water species were 2–3 times higher than that forN. neglecta.In general,Q 10(15–30°C) values forV max were in the range 1.8–2.0 for all warm water species studied except Skipjack tuna.V max for the internal red muscle fibres of Skipjack tuna were much more temperature dependent (Q 10(15–30°C)=3.1) (P<0.01) than for superficial red or white muscle fibres. The proportion of slower red muscle fibres in tuna (28% for 1 kg Skipjack) is 3–10 times higher than for most teleosts and is related to the tuna's need to sustain high cruising speeds. We suggest that the 8–10°C temperature gradient that can exist in Skipjack tuna between internal red and white muscles allows both fibre types to contract at the same speed. Therefore, in tuna, both red and white muscle may contribute to power generation during high speed swimming.  相似文献   

15.
Summary This study examines the hypothesis that mammalian species with wide fluctuations in population size will have greater metabolic rates than species with smaller population fluctuations. We tested this hypothesis using two microtine rodents — the beach vole (Microtus breweri) and the meadow vole (M. pennsylvanicus). Although these species experience similar climatic regimes, eat similar foods, and have a very close phylogenetic relationship, they show marked differences in demography. Microtus pennsylvanicus is prone to large supraannual fluctuations in population size, while M. breweri is essentially acyclical. Metabolic rate (oxygen consumption) of each species was measured using open-flow respirometry at ambient temperatures ranging from 2 to 34° C. Basal metabolic rate of M. pennsylvanicus (1.81 ml O2 g–1 h–1) was significantly greater than that of M. breweri (1.39 ml O2 g–1 h–1). The lower critical temperature, estimated by continuous two-phase regression, was 28.9° C for M. pennsylvanicus and 29.8° C for M. breweri. Regression lines below thermoneutrality did not differ in slope, but the elevation for M. pennsylvanicus was significantly higher. Thus, M. pennsylvanicus has a higher metabolic rate at all temperatures examined. These results support the hypothesis that metabolic rate is positively correlated with the extent of population fluctuation. We suggest that further evidence for, or against, this hypothesis should be found by comparing closely matched species pairs, rather than resorting to confounded allometric comparisons of ecologically and phylogenetically diverse taxa.  相似文献   

16.
West  John A.  Zuccarello  Giuseppe C.  Karsten  Ulf 《Hydrobiologia》1996,326(1):277-282
The red alga Stictosiphonia hookeri is epilithic in shaded habitats of the upper intertidal zone from 30 to 55° S. Thalli of this species from Argentina, Chile, South Africa and Australia, usually without reproductive structures when collected, all developed tetrasporangia in culture. Although good vegetative growth occurred in all nine isolates at 20–25 °C, 12:12 light: dark cycle, 10–30 µmol photons m–2 s–1, none reproduced in these conditions except one isolate from Australia. At 15 °C the four South African (34 °S) isolates developed tetrasporangial stichidia, and three completed a Polysiphonia-type life history. Gametophytes were unisexual or bisexual. At 15 °C one isolate from Chile (36 °S) formed tetrasporangia, but sporelings were not viable. At 10 °C isolates from Argentina and Chile (53 °S and 54 °S) formed tetrasporangia; however, only the Chile isolate completed a Polysiphonia-type life history with unisexual gametophytes. The temperature required to induce sporogenesis correlates with the range of water and air temperatures in the natural habitats of each isolate. In irradiances >50 µmol m–2 s–1 the thalli became yellow- brown within two weeks because of phycobiliprotein loss, but this did not impair growth or reproduction. The Argentina and Chile isolates were resistant to freezing in seawater for at least two days, showing no cell damage. The protein cuticle of the outer cell wall is repeatedly shed in culture. This may serve to minimize the attachment of epiphytes in the field.  相似文献   

17.
Summary The growth and hyoscyamine production of transformed roots of Datura stramonium have been examined in a modified 14-1 stirred tank reactor in both batch and continuous fermentations on media containing half or full strength Gamborg's B5 salts and at three different temperatures. Under a range of conditions, roots grown on half strength B5 salts with 3% w/v sucrose had a higher dry matter content (up to 8.3% w/w) and a higher hyoscyamine content (up to 0.52 mg·g–1 wet weight) than roots grown on full strength B5 salts with the same level of sucrose (up to 4.6% w/w dry matter and up to 0.33 mg hyoscyamine g–1 wet weight). Growth at 30°C was initially faster than at either 25°C or 35°C and by day 12, the drained weight of roots in the fermentor at 30°C was about fourfold greater than at 25°C and twice that at 35°C. The ultimate hyoscyamine levels attained (approximately 0.5 mg·g–1 wet weight) were similar at both 25°C and 30°C but some 40% lower at 35°C. Final packing densities of 70% w/v were achieved for roots after 37 days growth at 25°C and the highest production rate of 8.2 mg hyoscyamine l–1 per day was obtained for roots grown at 30°C. In continuous fermentation at 25°C, the release of hyoscyamine into the culture medium was low (less than 0.5% w/w of the total) but was up to sevenfold higher in fermentors operated at 30°C or 35°C. Offprint requests to: M. G. Hilton  相似文献   

18.
Summary The contractile properties of swimming muscles have been investigated in marine teleosts from Antarctic (Trematomus lepidorhinus, Pseudochaenichthys georgianus), temperate (Pollachius virens, Limanda limanda, Agonis cataphractus, Callionymus lyra), and tropical (Abudefduf abdominalis, Thalassoma duperreyi) latitudes. Small bundles of fast twitch fibres were isolated from anterior myotomes and/or the pectoral fin adductor profundis muscle (m. add. p). Live fibre preparations were viable for several days at in vivo temperatures, but became progressively inexcitable at higher or lower temperatures. The stimulation frequency required to produce fused isometric tetani increased from 50 Hz in Antarctic species at 0°C to around 400 Hz in tropical species at 25°C. Maximum isometric tension (Po) was produced at the normal body temperature (NBT) of each species (Antarctic, 0–2°C; North Sea and Atlantic, 8–10°C; Indo-West Pacific, 23–25°C). P0 values at physiological temperatures (200–300 kN·m–2) were similar for Antarctic, temperate, and tropical species. A temperature induced tension hysteresis was observed in muscle fibres from some species. Exposure to <0°C in Antarctic and <2°C in temperate fish resulted in the temporary depression of tension over the whole experimental range, an effect reversed by incubation at higher temperatures. At normal body temperatures the half-times for activation and relaxation of twitch and tetanic tension increased in the order Antarctic>temperate>tropical species. Relaxation was generally much slower at temperatures <10°C in fibres from tropical than temperate fish. Q10 values for these parameters at NBTs were 1.3 2.1 for tropical species, 1.7–2.6 for temperate species, and 1.6–3.5 for Antarctic species. The forcevelocity (P-V) relationship was studied in selected species using iso-velocity releases and the data below 0.8 P0 iteratively fitted to Hill's equation. The P-V relation at NBT was found to be significantly less curved in Antarctic than temperate species. The unloaded contraction velocity (Vmax) of fibres was positively correlated with NBT increasing from about 1 muscle fibre length·s–;1 in an Antarctic fish (Trematomus lepidorhinus) at 1°C to around 16 muscle fibre lengths·s–1 in a tropical species (Thalassoma duperreyi) at 24°C. It is concluded that although muscle contraction in Antarctic fish shows adaptations for low temperature function, the degree of compensation achieved in shortening speed and twitch kinetics is relatively modest.Abbreviations ET environmental temperature - m. add. p major adductor profundis - m. add. s. major adductor superficialis - NBT normal body temperature - P 0 maximum isometric tension - P-V force velocity - SR sarcoplasmic reticulum - T 1/2 a half activation time - T 1/2 r half relaxation time - V max unloaded contraction  相似文献   

19.
Sorghum [Sorghum bicolor (L.) Moench] plants were grown in growth chambers at 20, 25 and 30°C in a low P Typic Argiudoll (3.65 µg P g–1 soil, pH 8.3) inoculated with Glomus fasciculatum, Glomus intraradices, and Glomus macrocarpum to determine effects of vesicular-arbuscular mycorrhizal fungi (VAMF) species on plant growth and mineral nutrient uptake. Sorghum root colonization by VAMF and plant responses to Glomus species were temperature dependent. G. macrocarpum colonized sorghum roots best and enhanced plant growth and mineral uptake considerably more than the other VAMF species, especially at 30°C. G. fasciculatum enhanced shoot growth at 20 and 25°C, and mineral uptake only at 20°C. G. intraradices depressed shoot growth and mineral uptake at 30°C. G. macrocarpum enhanced shoot P, K, and Zn at all temperatures, and Fe at 25 and 30°C above that which could be accounted for by increased biomass. Sorghum plant growth responses to colonization by VAMF species may need to be evaluated at different temperatures to optimize beneficial effects.  相似文献   

20.
The effects of root-zone salinity (0, 30, and 60 mmol L–1 of NaCl) and root-zone temperature (10, 15, 20, and 25°C) and their interactions on the number of tillers, total dry matter production, and the concentration of nutrients in the roots and tops of barley (Hordeum vulgare L.) were studied. Experiments were conducted in growth chambers (day/night photoperiod of 16/8 h and constant air temperature of 20°C) and under water-culture conditions. Salinity and root temperature affected all the parameters tested. Interactions between salinity and temperature were significant (p<0.05) for the number of tillers, growth of tops and roots, and the concentration of Na, K, P in the tops and the concentration of P in the roots. Maximum number of tillers and the highest dry matter were produced when the root temperature was at the intermediate levels of 15 to 20°C. Effect of salinity on most parameters tested strongly depended on the prevailing root temperature. For example, at root temperature of 10°C addition of 30 mmol L–1 NaCl to the nutrient solution stimulated the growth of barley roots; at root temperature of 25°C, however, the same NaCl concentration inhibited the root growth. At 60 mmol L–1, root and shoot growth were maximum when root temperature was kept at the intermediate level of 15°C; most inhibition of salinity occurred at both low (10°C) and high (25°C) root temperatures. As the root temperature was raised from 10 to 25°C, the concentration of Na generally decreased in the tops and increased in the roots. At a given Na concentration in the tops or in the roots, respective growth of tops or roots was much less inhibited if the roots were grown at 15–20°C. It is concluded that the tolerance of barley plant to NaCl salinity of the rooting media appears to be altered by the root temperature and is highest if the root temperature is kept at 15 to 20°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号