首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrophobic sector of the mitochondrial ATPase complex was purified by sequential extraction with cholate and octylglucoside, by further differential solubilization with guanidine and cholate in the presence of phosphatidylcholine, and by fractionation with ammonium sulfate. A polypeptide with a mass of 28,000 dalton was present in the purified hydrophobic section which was cleaved by trypsin, resulting in loss of reconstitution activity. In contrast, dicyclohexylcarbodiimide-binding proteolipid remained unimpaired after exposure to trypsin. The32Pi-ATP exchange activity of the reconstituted ATPase complex was inhibited byp-hydroxymercuribenzoate, which reacted primarily with the 28,000-dalton protein, as monitored by acrylamide gel electrophoresis with14C-labeled inhibitor. The function of a 22,000-dalton polypeptide and of some minor components in the region of the proteolipid remains unknown. An examination of the phospholipid requirements for reconstitution of an active complex revealed an unexpected discrepancy. With an excess of phosphatidylethanolamine, optimal reconstitution of32Pi-ATP exchange and ATP synthesis in the presence of bacteriorhodopsin and light was achieved; at a high phosphatidylcholine:phosphatidylethanolamine ratio, the rate of ATP synthesis remained high, but the rate of32Pi-ATP exchange dropped precipitously. A new procedure is described for the reconstitution of the ATPase complex with purified phospholipids which is stable for at least 15 days.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - STE-DTT buffer sucrose (250 mM), Tricine-KOH (50 mM), EDTA (5 mM), DTT (5 mM), pH 8.0 - F o a membranous preparation from mitochondria conferring oligomycin (or rutamycin) sensitivity to F1 - F1F6 coupling factors 1 (ATPase) and 6 - OSCP oligomycin-sensitivity-conferring protein - BSA bovine serum albumin - SDS sodium dodecyl sulfate - DTT dithiothreitol - STE buffer sucrose (250 mM), Tricine-KOH (50 mM), EDTA (5 mM) - TUA particles submitochondrial particles prepared by stepwise exposure of light-layer submitochondrial particles to trypsin and urea, then sonic oscillation in the presence of dilute ammonia (pH 10.4) - OG-cholate buffer glycerol (20%), Tricine (50 mM), MgSO4 (5 mM), DTT (5mM), cholate (0.5%), octylglucoside (0.5%), pH 8.0 - p-HMB p-hydroxymercuribenzoate  相似文献   

2.
The proton translocating membrane ATPase of oral streptococci has been implicated in cytoplasmatic pH regulation, acidurance and cariogenicity. Studies have confirmed that Streptococcus mutans is the most frequently detected species in dental caries. A P-type ATPase that can act together with F1Fo-ATPase in S. mutans membrane has been recently described. The main objective of this work is to characterize the kinetic of ATP hydrolysis of this P-type ATPase. The optimum pH for ATP hydrolysis is around 6.0. The dependence of P-type ATPase activity on ATP concentration reveals high (K0.5=0.27 mM) and low (K0.5=3.31 mM) affinity sites for ATP, exhibiting positive cooperativity and a specific activity of about 74 U/mg. Equimolar concentrations of ATP and magnesium ions display a behavior similar to that described for ATP concentration in Mg2+ saturating condition (high affinity site, K0.5=0.10 mM, and low affinity site, K0.5=2.12 mM), exhibiting positive cooperativity and a specific activity of about 68 U/mg. Sodium, potassium, ammonium, calcium and magnesium ions stimulate the enzyme, showing a single saturation curve, all exhibiting positive cooperativities, whereas inhibition of ATPase activity is observed for zinc ions and EDTA. The kinetic characteristics reveal that this ATPase belongs to type IIIA, like the ones found in yeast and plants.  相似文献   

3.
Fermenting Escherichia coli is able to produce formate and molecular hydrogen (H2) when grown on glucose. H2 formation is possessed by two hydrogenases, 3 (Hyd-3) and 4 (Hyd-4), those, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenylases. At slightly alkaline pH (pH 7.5), the production of H2 was found to be dependent on Hyd-4 and the F0F1-adenosine triphosphate (ATPase), whereas external formate increased the activity of Hyd-3. In this study with cells grown without and with external formate H2 production dependent on pH was investigated. In both types of cells, H2 production was increased after lowering of pH. At acidic pH (pH 5.5), this production became insensitive either to N,N′-dicyclohexylcarbodiimide or to osmotic shock and it became largely dependent on Fdh-H and Hyd-3 but not Hyd-4 and the F0F1-ATPase. The results indicate that Hyd-3 has a major role in H2 production at acidic pH independently on the F0F1-ATPase.  相似文献   

4.
5.
Phosphatase activities were measured in preparations of vacuoles isolated from storage roots of red beet (Beta vulgaris L.). The vacuoles possessed both acid phosphatase and ATPase activities which could be distinguished by their susceptibility to inhibition by low concentrations of ammonium molybdate [(NH4)6Mo7O24·4H2O]. The acid phosphatase was completely inhibited by 100 M ammonium molybdate but the ATPase was unaffected. The acid phosphatase was a soluble enzyme which hydrolysed a large number of phosphate esters and had a pH optimum of 5.5. In contrast, the ATPase was partially membrane-bound, had a pH optimum of 8.0 and hydrolysed ATP preferentially, although it was also active agianst PPi, GTP and GDP. At pH 8.0 both the ATPase and PPase activities were Mg2+-dependent and were further stimulated by KCl. The ATPase and PPase activities at pH 8.0 may be different enzymes. The recovery and purification of the ATPase during vacuole isolation were determined. The results indicate that the Mg2+-dependent, KCl-stimulated ATPase activity is not exclusively associated with vacuoles.Abbreviations BSA bovine serum albumen - MES 2-(N-Morpholino)ethanesulphonic acid - MOPS 3-(N-Morpholino)propanesulphonic acid - Na2EDTA ethylenediaminetetra-acetic acid, disodium salt - Pi inorganic phosphate - PPi inorganic pyrophosphate - PPase inorganic pyrophosphatase - TCA trichloroacetic acid - TES N-tris(hydroxymethyl)methyl-2-amino-ethanesulphonic acid - Tris tris(hydroxymethyl)methylamine  相似文献   

6.
Several properties of ATPase bound to the inner membrane of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 were examined. The membrane-bound ATPase had two optimal peaks of the activity at pH 5.8 and 7.3. The ATPase activity was strongly inhibited by N,N’- dicyclohexylcarbodiimide (DCCD) and NaN3 at pH 5.8 and 8.0, and stimulated by MgCl2 and CaCl2 at pH 8.0. At pH 8.0, the enzyme hydrolyzed GTP and ITP as well as ATP but not AMP or p-nitrophenylphosphate. CTP, UTP, and ADP were poor substrates. These characteristics indicate that there is a F0F1-type ATPase in the inner membrane of this bacterium. In addition, the ATPase activity was also significantly inhibited by Na3 Vo4, suggesting the coexistence of a P-type ATPase as a minor constituent. The membrane-bound ATPase activity was maximum at 50°C, but the strong DCCD-sensitivity observed at 20°C was greatly reduced at this temperature.  相似文献   

7.
Potassium ion pool was studied in glycolyzing Enterococcus hirae, grown at high or low alkaline pH (pH 9.5 and 8.0, respectively). Energy-dependent increase of K+ pool was lower for the wild-type cells, grown at pH 9.5, than that for the cells grown at pH 8.0. It was inhibited by N,N′-dicyclohexylcarbodiimide (DCCD). The stoichiometry of DCCD-inhibited K+ influx to DCCD-inhibited H+ efflux for the wild-type cells, grown at pH 9.5 or 8.0, was fixed for different K+ external activity. DCCD-inhibited ATPase activity of membrane vesicles was significantly stimulated by K+ for the wild-type cells grown at pH 9.5, and required K+ for the wild-type cells grown at pH 8.0, while the levels of α and β subunits of the F1 and b subunit of the F0 were lower for the cells grown at pH 9.5 than that for the cells grown at pH 8.0. Such an ATPase activity was residual in membrane vesicles from the atpD mutant with a nonfunctional F0F1. ATPase activity of membrane vesicles from the mutant with defect in Na+-ATPase was higher for the cells grown at pH 9.5 than that for the cells grown at pH 8.0, and was inhibited by DCCD. An energy-dependent increase of K+ pool in this bacterium, grown at a high or low alkaline pH, is assumed to occur through a K+ uptaking system, most probably the Trk. The latter functions in a closed relationship with the H+-translocating ATPase F0F1. Received: 30 June 1997 / Accepted: 4 August 1997  相似文献   

8.
Enterococcus hirae grow well under anaerobic conditions at alkaline pH (pH 8.0) producing acids by glucose fermentation. Bacterial growth was shown to be accompanied by decrease of redox potential from positive values (~+35 mV) to negative ones (~−220 mV). An oxidizer copper (II) ions (Cu2+) affected bacterial growth in a concentration-dependent manner (within the range of 0.05 mM to 1 mM) increasing lag phase duration and decreasing specific growth rate. These effects were observed with the wild-type strain ATCC9790 and the atpD mutant strain MS116 (with absent β subunit of F1 of the FoF1 ATPase) both. Also ATPase activity and proton–potassium ions exchange were assessed with and without N,N′-dicyclohexylcarbodiimide (DCCD), inhibitor of the FoF1 ATPase. In both cases (DCCD ±), even low Cu2+ concentrations had noticeable effect on ATPase activity, but with less visible concentration-dependent manner. Changes in the number of accessible SH-groups were observed with E. hirae ATCC9790 and MS116 membrane vesicles. In both strains Cu2+ markedly decreased the number of SH-groups in the presence of K+ ions. The addition of ATP increased the amount of accessible SH-groups in ATCC9790 and decreased this number in MS116; Cu2+ blocked ATP-installed increase in SH-groups number in ATCC9790. H+–K+-exchange of bacteria was markedly inhibited by Cu2+, but stronger effects were detected together with DCCD. Moreover, discrimination between Cu2+ and other bivalent cation—Ni2+ was shown. It is suggested that Cu2+ ions inhibit E. hirae cell growth by direct affect on the FoF1 ATPase leading to conformational changes in this protein complex and decrease in its activity.  相似文献   

9.
Ion stimulation and some other properties of an ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.) have been determined. The ATPase had a specific requirement for Mg2+ and in the presence of Mg2+ it was stimulated by salts of monovalent cations. The degree of stimulation by monovalent salts was influenced mainly by the anion and the order of effectiveness of the anions tested was Cl->HCO 3 - >Br->malate>acetate>SO 4 2- . For any given series of anions the magnitude of the stimulation obtained was influenced by the accompanying cation (NH 4 + Na+>K+). This cation effect was abolished by 0.01% (v/v) Triton X-100 and it is suggested that it is the result of different permeabilities of membrane vesicles to the cations. There was no evidence of synergistic stimulation of the ATPase by mixtures of Na+ and K+. KCl- and NaCl-stimulation was maximal with salt concentrations in the range 60–150 mM. The true substrate of the enzyme was shown to be MgATP. It was shown that KCl stimulation was the result of an increase in Vmax rather than a change in the affinity of the enzyme for MgATP. The ATPase was inhibited by N,N-dicyclohexylcarbodiimide, diethylstilbestrol, mersalyl and KNO3 but other inhibitors tested (azide, oligomycin, orthovanadate, K3[Cr(oxalate)6] and ethyl-3-[3-dimethylaminopropyl]carbodiimide) were without effect or caused only partial inhibition at the highest concentration tested. The ATPase activity was equally distributed between pellet and supernatant fractions obtained after the subfractionation of vacuoles but the properties of the ATPase in each fraction were the same. It is suggested that beet vacuoles possess only one ATPase. The properties of the ATPase are compared with those of ATPases associated with other plant membranes and organelles and its possible role in transport at the tonoplast is discussed.Abbreviations ATPF free ATP - ATPT total ATP - BSA bovine serum albumen - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DNP 2,4-dinitrophenol - EDAC ethyl-3-(3-dimethylaminopropyl)carbodiimide - Km apparent Michaelis constant - MgATP complex of Mg2+ and ATP - Mg F 2+ free Mg2+ - Mg T 2 total Mg2+ - MES 2-(N-Morpholino)ethanesulphonic acid - Na2EDTA disodium ethylenediaminetetraacetic acid - NEM N-ethylmaleimide - Pi inorganic phosphate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)methylamine - Vmax maximum velocity  相似文献   

10.
This study concerns the inhibitory effects of acid pH and nickel on growth, nutrient (NO3 - and NH4 +) uptake, carbon fixation, O2 evolution, electron transport chain and enzyme (nitrate reductase and ATPase) activities of acid tolerant and wild-type strains of Chlorella vulgaris. Though a general reduction in all these variables was noticed with decreasing pH, the tolerant strain was found to be metabolically more active than the wild-type. A reduced cation (NH4 +, Na+, K+ and Ca2+) uptake, coupled with a facilitated influx of anions (NH4 +, PO4 3- and HCO3 -), suggested the development of a positive membrane potential in acid tolerant Chlorella. Nevertheless, a tremendous increase in ATPase activity at decreasing pH revealed the involvement of superactive ATPase in exporting H+ ions and keeping the internal pH neutral. A difference in Na+ and K+ efflux of the two strains at decreasing pH suggests there is a difference in membrane permeability. The low toxicity of Ni in the acid tolerant strain may be due to the low Ni uptake brought about by a change in membrane potential as well as in permeability. Hence, the development of superactive ATPase and a change in both membrane potential and permeability not only offers protection against acidity, but also co-tolerance to metals.  相似文献   

11.
(R)-2-Phenylpropanoic acid was synthesized from the racemic acid through an isomerization reaction involving resting cells of Nocardia diaphanozonaria JCM3208. The isomerization activity of the cells was enhanced 25-fold by adding 5.5 mM racemic 2-phenylpropanoic acid to the culture medium. When 5 mM racemic 2-phenylpropanoic acid was included in the reaction mixture (4 ml) containing resting cells (100 mg dry cell wt) in 25 mM K2HPO4/KH2PO4 buffer (pH 7.0) at 30 °C for 8 h, 4.56 mM (R)-2-phenylpropanoic acid (95.8% e.e.) was formed with a 91% molar conversion yield.  相似文献   

12.
The data on the pH dependence of the Km for Mg-ATP and the Vm of the ATPase of pig heart mitochondrial F1 indicate the presence of two groups of different pK's which modify the enzyme activity. The first pK at pH 9.6 ± 0.2 may be related to the possible presence of arginine and/or tyrosine residues in the ATPase site; the second pK at pH 7.2 ± 0.2 could be due to the presence of a histidine residue in the ATPase site or to the involvement of amino groups in the ATPase site. The inhibition induced by photooxidation in the presence of Rose Bengal is not pH dependent in the pH range corresponding to the pK of histidine. The inhibition induced by diethylpyrocarbonate cannot be reversed by hydroxylamine and the characteristics of this inhibition rather correspond to the reaction of the inhibitor with amino groups. Pyridoxal phosphate also inhibits the ATPase activity of F1 by reaction with amino groups. The presence of ATP or phosphate partially protects against the inhibition induced by diethylpyrocarbonate or pyridoxal phosphate, which indicates that amino groups may be directly or indirectly involved in the binding of nucleotide and phosphate to F1. Glutaraldehyde also inhibits the enzyme by reacting with amino groups and inducing a crosslinking of the subunits. The disappearance of subunit C is well correlated with the decrease of ATPase activity, indicating that subunit C is essential in the ATPase activity.  相似文献   

13.
The heat shock protein 70 (Hsp70/DnaK) gene of Bacillus licheniformis is 1,839 bp in length encoding a polypeptide of 612 amino acid residues. The deduced amino acid sequence of the gene shares high sequence identity with other Hsp70/DnaK proteins. The characteristic domains typical for Hsps/DnaKs are also well conserved in B. licheniformis DnaK (BlDnaK). BlDnaK was overexpressed in Escherichia coli using pQE expression system and the recombinant protein was purified to homogeneity by nickel-chelate chromatography. The optimal temperature for ATPase activity of the purified BlDnaK was 40°C in the presence of 100 mM KCl. The purified BlDnaK had a V max of 32.5 nmol Pi/min and a K M of 439 μM. In vivo, the dnaK gene allowed an E. coli dnaK756-ts mutant to grow at 44°C, suggesting that BlDnaK should be functional for survival of host cells under environmental changes especially higher temperature. We also described the use of circular dichroism to characterize the conformation change induced by ATP binding. Binding of ATP was not accompanied by a net change in secondary structure, but ATP together with Mg2+ and K+ ions had a greater enhancement in the stability of BlDnaK at stress temperatures. Simultaneous addition of DnaJ, GrpE, and NR-peptide (NRLLLTG) synergistically stimulates the ATPase activity of BlDnaK by 11.7-fold.  相似文献   

14.
It was shown before (Wooten, D. C., and Dilley, R. A. (1993) J. Bioenerg. Biomembr. 25, 557–567; Zakharov, S. D., Li, X., Red'ko, T. P., and Dilley, R. A. (1996) J. Bioenerg. Biomembr. 28, 483–493) that pH dependent reversible Ca2+ binding near the N- and C-terminal end of the 8 kDa subunit c modulates ATP synthesis driven by an applied pH jump in chloroplast and E. coli ATP synthase due to closing a proton gate proposed to exist in the F0 H+ channel of the F0F1 ATP synthase. This mechanism has further been investigated with the use of membrane vesicles from mutants of the cyanobacterium Synechocystis 6803. Vesicles from a mutant with serine at position 37 in the hydrophilic loop of the c-subunit replaced by the charged glutamic acid (strain plc 37) has a higher H+/ATP ratio than the wild type and therefore shows ATP synthesis at low values of H +. The presence of 1 mM CaCl2 during the preparation and storage of these vesicles blocked acid–base jump ATP formation when the pH of the acid side (inside) was between pH 5.6 and 7.1, even though the pH of the acid–base jump was thermodynamically in excess of the necessary energy to drive ATP formation at an external pH above 8.28. That is, in the absence of added CaCl2, ATP formation did occur under those conditions. However, when the base stage pH was 7.16 and the acid stage below pH 5.2, ATP was formed when Ca2+ was present. This is consistent with Ca2+ being displaced by H+ ions from the F0 on the inside of the thylakoid membrane at pH values below about 5.5. Vesicles from a mutant with the serine of position 3 replaced by a cysteine apparently already contain some bound Ca2+ to F0. Addition of 1 mM EGTA during preparation and storage of those vesicles shifted the otherwise already low internal pH needed for onset of ATP synthesis to higher values when the external pH was above 8. With both strains it was shown that the Ca2+ binding effect on acid–base induced ATP synthesis occurs above an internal pH of about 5.5. These results were corroborated by 45Ca2+- ligand blot assays on organic solvent soluble preparations containing the 8 kDa F0 subunit c from the S-3-C mutant ATP synthase, which showed 45Ca2+ binding as occurs with the pea chloroplast subunit III. The phosphorylation efficiency (P/2e), at strong light intensity, of Ca2+ and EGTA treated vesicles from both strains were almost equal showing that Ca2+ or EGTA have no other effect on the ATP synthase such as a change in the proton to ATP ratio. The results indicate that the Ca2+ binding to the F0 H+ channel can block H+ flux through the channel at pH values above about 5.5, but below that pH protons apparently displace the bound Ca2+, opening the CF0 H+ channel between the thylakoid lumen and H+ conductive channel.  相似文献   

15.
The effect of negatively charged dilauroylphosphatidic acid (DLPA) vesicles on the conformation of poly( -lysine) was investigated by circular dichroism measurements. DLPA vesicles induced a confomiational change Of poly( -lysine) from the random coil to β-structure in 5 mM Tes, pH 7.0. The fraction of induced β-structure (Fβ) was determined via a procedure of curve fit the observed spectra to the reference spectra. Fβ increased linearly with the molar ratio, r, of DLPA to lysine residues up to r 0.7, and reached a saturation value of 1 at r > 1. Within the range 0.7 r 1, precipitation occurred. The effect of dilution of the negative charge on vesicle membranes was examined by mixing DLPA with dilauroylphosphatidylcholine (DLPC). Although the β-structure Of poly -lysine) was also induced by mixed vesicles, the saturation value of Fβ decreased with decreasing DLPA content in mixed vesicles. The variation in saturation value of Fβ with the composition of mixed vesicles was interpreted in terms of the change in average distance between DLPA head groups in mixed vesicles.  相似文献   

16.
I. Struve  U. Lüttge 《Planta》1987,170(1):111-120
Membrane vesicles were isolated from mesophyll cells of Mesembryanthemum crystallinum in the C3 state and in the crassulacean acid metabolism (CAM) state. The distribution of ATP-hydrolysis and H+-transport activities, and the activities of hydroxypyruvate reductase and Antimycin-insensitive cytochrome-c-reductase on continuous sucrose gradients was studied. For isolations carried out routinely a discontinuous sucrose gradient (24%/37%/50%) was used. Nitrate-sensitive ATP-hydrolysis and H+-transport activities increased several-fold during the transition from C3 photosynthesis to CAM. Nitrate-sensitive ATPase showed a substrate preference for ATP with an apparent Km (MgATP2-) of 0.19–0.37 mM. In both C3 and CAM states the ATPase showed a concentration-dependent stimulation by the anions chloride and malate. However, the pH optima of the two states were different: the ATPase of C3- M. crystallinum had an optimum of pH 7.4 and that of CAM-M. crystallinum an optimum of pH 8.4. The optical probe oxonol-VI was used to demonstrate the formation of MgATP2--dependent electric-potential gradients in tonoplast vesicles.Abbreviations Bistris-Pronane 1,3-bis [tris(hydroxymethyl)-methylaminol propane - CAM Crassulacean acid metabolism - DIDS 4,4-dilsothiocyano-2,2-stilbene disulfonic acid: - DTT dithiothreitol - ER endoplasmic reticulum - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - HPR hydroxypyruvate reductase - IDPase inosine 5-diphosphatase - OX-VI oxonol VI - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

17.
18.
This study examined the bioenergetics of Listeria monocytogenes, induced to an acid tolerance response (ATR). Changes in bioenergetic parameters were consistent with the increased resistance of ATR-induced (ATR+) cells to the antimicrobial peptide nisin. These changes may also explain the increased resistance of L. monocytogenes to other lethal factors. ATR+ cells had lower transmembrane pH (ΔpH) and electric potential (Δψ) than the control (ATR) cells. The decreased proton motive force (PMF) of ATR+ cells increased their resistance to nisin, the action of which is enhanced by energized membranes. Paradoxically, the intracellular ATP levels of the PMF-depleted ATR+ cells were ~7-fold higher than those in ATR cells. This suggested a role for the FoF1 ATPase enzyme complex, which converts the energy of ATP hydrolysis to PMF. Inhibition of the FoF1 ATPase enzyme complex by N′-N′-1,3-dicyclohexylcarbodiimide increased ATP levels in ATR but not in ATR+ cells, where ATPase activity was already low. Spectrometric analyses (surface-enhanced laser desorption ionization-time of flight mass spectrometry) suggested that in ATR+ listeriae, the downregulation of the proton-translocating c subunit of the FoF1 ATPase was responsible for the decreased ATPase activity, thereby sparing vital ATP. These data suggest that regulation of FoF1 ATPase plays an important role in the acid tolerance response of L. monocytogenes and in its induced resistance to nisin.  相似文献   

19.
The association of an ATPase with the yeast peroxisomal membrane was established by both biochemical and cytochemical procedures. Peroxisomes were purified from protoplast homogenates of the methanol-grown yeast Hansenula polymorpha by differential and sucrose gradient centrifugation. Biochemical analysis revealed that ATPase activity was associated with the peroxisomal peak fractions which were identified on the basis of alcohol oxidase and catalase activity. The properties of this ATPase closely resembled those of the mitochondrial ATPase of this yeast. The enzyme was Mg2+-dependent, had a pH optimum of approximately 8.5 and was sensitive to N,N-dicyclohexylcarbodiimide (DCCD), oligomycin and azide, but not to vanadate. A major difference was the apparent K m for ATP which was 4–6 mM for the peroxisomal ATPase compared to 0.6–0.9 mM for the mitochondrial enzyme.Cytochemical experiments indicated that the peroxisomal ATPase was associated with the membranes surrounding these organelles. After incubations with CeCl3 and ATP specific reaction products were localized on the peroxisomal membrane, both when unfixed isolated peroxisomes or formaldehyde-fixed protoplasts were used. This staining was strictly ATP-dependent; in controls performed i) in the absence of substrate, ii) in the presence of glycerol 2-phosphate instead of ATP, or iii) in the presence of DCCD, staining was invariably absent. Similar staining patterns were observed in subcellular fractions and protoplasts of Candida utilis and Trichosporon cutaneum X4, grown in the presence of ethanol/ethylamine or ethylamine, respectively.Abbreviations MES 2-(N-Morpholino)ethanesulfonic acid - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

20.
The three major subunits (α, β and γ) of the coupling factor, F1 ATPase, of Escherichia coli were separated and purified by hydrophobic column chromatography after the enzyme was dissociated by cold inactivation. The ability to hydrolyze ATP was reconstituted by dialyzing the mixture of subunits against 0.05 M Tris-succinate, pH 6.0, containing 2 mM ATP and 2 mM MgCl2. A mixture containing α, β and γ regained ATP hydrolyzing activity. Individual subunits alone or mixtures of any two subunits did not develop ATPase activity, except for a low but significant activity with α plus β. The reconstituted ATPase had a Km of 0.23 mM for ATP and a molecular weight by sucrose gradient density centrifugation of about 280,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号