首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methods were developed to determine proteinase activity in germinating seeds of Scots pine. The assays were based on the liberation of TCA-soluble peptides from haemoglobin at pH 3.7 and from casein at pH 5.4 and pH 7.0; the reaction products were determined by the Lowry method. — Endosperms separated from seeds at the time of rapid storage protein mobilization (seedling length between 20 and 50 mm) showed high proteinase activities in all three assays. Experiments with different inhibitors suggested that at least four enzymes were involved. One of the enzymes resembled mammalian and microbial pepsin-like acid proteinases: the pH optimum was 3.7 and the enzyme was inhibited by pepstatin.—The proteinase activities in the endosperms were high enough to account for the mobilization of the reserve proteins during germination. Moreover the activities at pH 3.7.5.4. and 7.0 in the endosperms were 10-, 25-, and 50-fold the corresponding activities in the growing seedlings (a “reference” tissue). Consequently, it seems that both the acid and neutral proteinases take part in the mobilization of storage proteins in the germinating seed.  相似文献   

2.
When fresh extracts of endosperms separated from germinating seeds of Scots pine were dialysed at 5°C, proteinase activity on haemoglobin at pH 3.7 showed only a small initial increase, proteinase activities on casein at pH 5.4 and at pH 7.0 increased several-fold, and all the corresponding inhibitor activities disappeared (Salmia and Mikola 1980, Physiol. Plant. 48: 126–130). To find out what happens during dialysis, both fresh and dialysed extracts were fractionated by gel chromatography on Sephacryl S-200. – The fresh extracts had a major proteinase peak (mol. wt. 42,000) with high activity at pH 3.7 and moderate activities at pH 5.4 and 7.0 (pine proteinase I) and a smaller peak (mol. wt. 30,000) with high activity at pH 5.4 and 7.0 and smaller activity at pH 3.7 (pine proteinase II). In dialysed extracts the situation was reversed: the peak of proteinase I was very small while the peak of proteinase II was very high. Apparently, proteinase I is largely inactivated during dialysis while the activity of proteinase II increases, at least partly due to destruction of inhibitors. – The two enzymes were -SH proteinases, as they were completely inhibited by p -hydroxymercuribenzoate; both of them were also inhibited by the endogenous proteinase inhibitors of resting pine seeds. Besides these enzymes, the endosperm extracts contained pepsin-like acid proteinase activity, which is not affected by the endogenous inhibitors. This enzyme activity was largely inactivated during dialysis.  相似文献   

3.
Breakdown of gliadin during germination of xHaynaldoticum sardoum Meletti et Onnis seeds is correlated with the appearance in the endosperms of a proteinase activity, which is absent in the quiescent seed. This activity is optimal at pH 4 and has a maximum stability at pH 4–5. Gel filtration of proteinase activity extracted from quiescent seeds indicates a molecular weight of 60–100 kDa. The proteinase can hydrolyze hemoglobin but not gliadin and is inhibited by pepstatin A and, to a lower extent, by p -chloromercuribenzoic acid (p-CMB). Gel filtrations of crude extracts from germinating seeds reveal two peaks (molecular weight 66 and 21 kDa) of activity against hemoglobin and a shoulder and a peak (molecular weight 21 kDa) of activity on gliadin. The first peak of activity against hemoglobin is inhibited by pepstatin A and p-CMB; the second one is inhibited by p-CMB and leupeptin. As for the gliadin-eluted activity the shoulder is mainly inhibited by pepstatin A and p-CMB, whereas the peak is inhibited by p-CMB and leupeptin. Estimations of the ratios of total nitrogen to α-amino nitrogen, suggest that the enzyme preparations mainly contain proteinases. It is concluded that the proteinases present in the quiescent seeds of xH. sardoum , in particular aspartic proteinases (EC 3.4.23), could play a role as initiator endoproteases or participate in the digestion of modified proteins during the mobilization of reserve proteins. The cysteine proteinases (EC 3.4.22) appearing during the germination seem to account for the hydrolysis of the most abundant class of protein reserves, the prolamins.  相似文献   

4.
Resting seeds of Scots pine (Pinus sylvestris L.) contain inhibitors which inhibit the proteinase activity present in germinating seeds but have no effect on trypsin or chymotrypsin. When a crude inhibitor preparation was chromatographed on Sephadex G-75, the inhibitor activity separated into four peaks with elution volumes corresponding to the molecular weights 24,000, 14,600, 14,000, and 9000. Each of the inhibitors affected both the hydrolysis of haemoglobin at pH 3.7 and the hydrolysis of casein at pH 5.4 and 7.0 by proteinase extracts prepared from “germinating” endosperms. These results suggest that one major proteinase was possibly acting in all the assays. In resting seeds inhibitor activity was present in both the embryo and the endosperm, the activity (per mg dry weight) in the embryo being about 2-fold that in the endosperm. In the endosperms of germinating seeds the inhibitor activity per seed decreased at about the same rate as total N and dry weight. In the seedlings the activity per seedling remained approximately constant. The patterns of the activity changes suggest that the inhibitors do not control the breakdown of storage proteins; a more probable function is the protection of other cellular components from the high proteinase activities required for the rapid proteolysis during germination.  相似文献   

5.
Extracts of resting pine seeds inhibited the proteinase activities present in extracts of endosperms of germinating seeds (hydrolysis of haemoglobin at pH 3.7 and hydrolysis of casein at pH 5.4 and 7.0). Heating the extracts of resting seeds at 60°C destroyed their own proteinase activity but their proteinase inhibitor activity decreased by only 25 to 30%. Some properties of the inhibitor(s) were studied using extracts treated at 60°C. The inhibitor activities were non-dialysable. the inhibition increased linearly with increasing inhibitor concentration up to 80% of total proteinase activity, and the maximal inhibition was 80% at pH 3.7. 90% at pH 5.4. and 97% at pH 7.0. The extracts of resting seeds did not inhibit the pepsin-like acid pine proteinase that accounts for a minor part of the proteolytic activity of endosperm extracts at pH 3.7. Neither did they have any effect on the acid pine carboxypeptidase or trypsin and chymotrypsin. Fresh extracts of endosperms of germinating seeds contained relatively high proteinase activity (assayed directly) and moderate inhibitor activity (assayed after treatment at 60°C). When fresh extracts were dialysed at 50°C for 48 h their proteinase activities increased considerably while the corresponding inhibitor activities disappeared. It is concluded that the decrease of inhibitors during dialysis is due to enzymatic inactivation and that the corresponding increase of proteinase activities is at least partly due to the destruction of the inhibitors.  相似文献   

6.
Extracts prepared from endosperms of germinating seeds of Scots pine, Pinus sylvestris L., rapidly hydrolysed the β-naphthylamides of L-phenylalanine and L-leucine optimally at pH 6.5 and that of L-arginine at pH 7.7. Disc electrophoresis followed by activity staining showed that the activities were due to two naphthylamidases (aminopeptidases) with different substrate specificities. Seeds were allowed to germinate at 20°C on agar gel in the dark and the activities on the three substrates were assayed from separated endosperms and seedlings at various stages of germination. The activities in the endosperm of resting seeds were relatively high and they remained unchanged throughout the period of reserve protein mobilization (seedling length up to 50 mm), after which they began to decrease. The activities of the naphthylamidases are rather small compared with those of the two alkaline peptidases of pine, contributing about 17% of the total amino-peptidase activity in the endosperm of germinating seeds. The total aminopeptidase activity is sufficient to account for the rate of storage protein mobilization during germination. In the seedlings the naphthylamidase activities (per seedling) increased continuously during germination, and activities per g dry weight were higher than those in the endosperm.  相似文献   

7.
8.
Leena Mikola  Juhani Mikola 《Planta》1980,149(2):149-154
In germinating grains of barley, Hordeum vulgare L. cv. Himalaya, free proline accumulated in the starchy endosperm during the period of rapid mobilization of reserve proteins. When starchy endosperms were separated from germinating grains and homogenized in a dilute buffer of pH 5 (the pH of the starchy endosperm), the liberation of proline continued in these suspensions. The process was completely inhibited by diisopropylfluorophosphate, indicating that it was totally dependent on serine carboxy-peptidases. The carboxypeptidases present in the starchy endosperms of germinating grains were fractionated by chromatography on DEAE-cellulose. Four peaks were obtained, all with different activity spectra on the seven carbobenzoxydipeptides (Z-dipeptides) tested. Two of the peaks corresponded to previously known barley carboxypeptidases; these as well as a third peak hydrolyzed substrates of the types Z-X-Y and Z-X-Pro (X and Y denote any amino acid residue except proline). The fourth peak corresponded to a proline carboxypeptidase specific for substrates of the Z-Pro-X type. Apparently, in the hydrolysis of longer proline-containing peptides there must be sequential cooperation between the two carboxypeptidase types. The carboxypeptidases in extracts of starchy endosperms also liberated proline from the peptides Ala-Ala-Ala-Pro and Ala-Ala-Pro while Ala-Pro and Pro-Ala were not attacked. The dipeptides, however, were rapidly hydrolyzed around pH 7 by extracts prepared from the scutella of germinating grains. It is concluded that one part of the proline residues of the reserve proteins is liberated in situ in the starchy endosperm through the combined action of acid proteinases and carboxypeptidases, while another part is taken up in the form of small peptides by the scutellum, where proline is liberated by amino- and/or dipeptidases in some neutral compartment.Abbreviations DFP diisopropylfluorophosphate - DTT dithiothreitol - TNBS 2,4,6-trinitrobenzenesulphonic acid - Z N-carbobenzoxy - TLC thin layer chromatography A preliminary account of these results was given at the Meeting of the Federation of European Plant Physiological Societies in Edinburgh in July 1978. Abstract No. 181  相似文献   

9.
Aspartyl proteinase (EC 3.4.23) from cucumber seeds was purified by ammonium sulphate fractionation, chromatography on immobilized pepstatin and gel filtration on Sephacryl S-200. The preparation obtained, homogeneous on polyacrylamide-gel electrophoresis in acidic and alkaline media, has a molecular mass of 42,000, pI of 5.2, and shows the highest activity with denatured haemoglobin at pH 3.2. The proteinase is stable in slightly alkaline medium, whereas it is inactivated in acidic medium, especially in the presence of NaCl. The enzyme activity is affected neither by the inhibitors of serine proteinases, sulfhydryl-proteinases and metalloproteinases, nor by divalent metal ions, whereas the enzyme is inactivated by the inhibitors of aspartyl proteinases: 1,2,3-epoxy(p-nitrophenoxy)propane, diazoacetyl-DL-norleucine and pepstatin.  相似文献   

10.
Proteolytic Activities in x Haynaldoticum sardoum Seeds of Different Ages   总被引:1,自引:0,他引:1  
Carboxypeptidase, aminopeptidase and proteinase activities weremeasured in endosperms from dry and germinating x Haynaldoticumsardoum naturally aged seeds. Carboxypeptidase activity, presentin dry seeds, decreased slightly during germination and remainednearly unchanged during the storage period. Aminopeptidase activityincreased during germination in younger seeds, but decreasedin non-viable seeds. Proteinase activity was absent in dry seeds,increased during germination in younger seeds and disappearedin the older ones. Proteinase activity was not recovered in old endosperms followingtransplantation of young embryos, and was recovered only toa very small extent in young endosperms following transplantationof old embryos. Young endosperms onto which young embryos hadbeen transplanted gave maximum recovery of enzyme activity,although this was lower than in young intact seeds. These results suggest that the reduced or delayed availabilityof nutrients to the embryo axis is not the only factor causingthe failure of seeds to germinate, the ageing process beinga progressive phenomenon affecting both embryo and endosperm. x Haynaldoticum sardoum, Denti de cani, seed ageing, proteolytic activities, embryo-transplantation  相似文献   

11.
Degradation of muscle homogenate from the metamorphosing tadpole tail of bullfrog, Rana catesbeiana, was examined at acid and neutral pHs. More rapid and complete degradation was observed at acid pH. Proteinases working at acid pH were not inhibited by pepstatin but were inhibited by leupeptin. However, the inhibition by leupeptin was enhanced by pepstatin. These results show that lysosomal proteinases, a thiol proteinase(s) rather than cathepsin D, are involved in the degradation of tail muscle proteins.  相似文献   

12.
Two proteinases (proteinases I and II) have been purified from Crotalus adamanteus venom to the stage of electrophoretic homogeneity and proteinase II has been crystallized. The proteinase differ slightly in molecular weight and amino acid composition. Both are metalloenzymes requiring Zn2+ or Ca2+, or both; neither requires thiol compounds for activation. The proteinases are free of esterolytic activity against benzoly-L-arginine ethyl ester and benzoyl--tyrosine ethyl ester. Proteinase II cleaves the oxidized B chain of insulin at the bonds Phe1-Val2, His5-Leu6, His10-Leu11, Ala14-Leu15, Leu15-Tyr16, and Tyr-16-Leu17. Digestion of polylsine and polyarginine by proteinase II liberates products ranging from dodecapeptides to hexapeptides. Proteinases I and II catalytically inactive human plasma alpha 1-proteinase inhibitor (54,000 daltons). Electrophoretic analysis of the reaction of proteinase II with alpha 1-proteinase inhibitor reveals that an inactivated inhibitor species of 50,000 daltons is formed, and a peptide of 4,000 daltons is released. The gradual disappearance of the native inhibitor results in the corresponding loss of inhibitory activity against trypsin and chymotrypsin.  相似文献   

13.
Wrobel R  Jones BL 《Plant physiology》1992,100(3):1508-1516
Barley endoproteolytic enzymes are important to germination because they hydrolyze endosperm storage proteins to provide precursors for new protein synthesis. We recently developed an electrophoretic method utilizing gel-incorporated protein substrates to study the endoproteinases of 4-d-germinated barley (Hordeum vulgare L. cv Morex) grain. This work extends those findings to determine the temporal pattern of the appearance of the endoproteinases during germination, the sensitivities of the proteinases to class-specific proteinase inhibitors, and where, in germinating caryopses, the proteinases reside. Six endoproteinase activity bands (representing a minimum of seven enzymes) were present in 5-d-germinated barley grain extracts subjected to electrophoresis in nondenaturing gels at pH 8.8. The activities of two of the enzyme bands (“neutral” proteinases) increased as the pH was increased from 3.8 to 6.5. The activities of the remaining four (“acidic”) bands diminished abruptly as the pH increased above 4.7. Two proteinase bands hydrolyzed gelatin but not edestin, four of the proteinases hydrolyzed both gelatin and edestin at nearly the same rates, and one enzyme degraded only edestin. One neutral endoproteinase was sensitive to diisopropyl fluorophosphate inhibition, and the other was not inhibited by any of inhibitors tested. Four of acidic enzymes were cysteine proteinases [inhibited by trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and N-ethylmaleimide]; the other was an aspartic acid endoproteinase (sensitive to pepstatin). Only the aspartic proteinase was detected in either ungerminated or steeped barley grain. During the germination (malting) process, the aspartic endoproteinase activity decreased until the second day of germination and then increased until germination day 5. The first endoproteinase(s) induced during germination was a neutral enzyme that showed activity on the 1st day of the germination phase after steeping. Most of the endoproteinases became active on the 2nd or 3rd germination day, but one cysteine proteinase was not detected until the 5th day. Acid cysteine proteinases were present in the aleurone, scutellum, and endosperm tissues but not in shoots and roots. The aleurone layer and endosperm contained almost exclusively band B1 neutral proteinases, whereas the scutellum, shoots, and roots contained both B1 and B2 bands. This work shows that germinating barley contains a complex set of proteinases whose expression is temporally and spatially controlled. But, at the same time, it also shows that this electrophoretic method for separating and studying individual enzymes of this complex will allow us to more readily characterize and purify them.  相似文献   

14.
Two distinct Ca2+-activated proteinases were purified and characterized from hearts of hypertensive rats. Ca2+-activated proteinases I and II, having low and high Ca2+ requirements, respectively, were first separated by DEAE-cellulose chromatography. The enzymes were then purified individually by different column procedures: chromatography on phenyl-Sepharose, then Sephadex G-200 for proteinase I and reactive-red agarose for proteinase II. The apparent molecular weight of purified proteinase I was 125 000 and that for purified proteinase II was 110 000. Both enzymes are heterodimers made up of a larger catalytic subunit and a smaller subunit devoid of proteinase activity. Ca2+ concentrations for half-maximal activation were 5 microM for proteinase I and 200 microM for proteinase II. Both enzymes were inhibited by sulfhydryl-modifying agents, but exhibited different characteristics in the auto-digestion reaction in the presence of Ca2+. Proteinases I and II were also purified from hearts of normotensive rats and shown to be identical to their respective counterparts from hearts of hypertensive rats. However, proteinase II activity in hypertensive rat hearts was significantly elevated as compared to controls.  相似文献   

15.
A cysteine proteinase that possibly participates in the degradation of phaseolin, the main storage protein of kidney bean ( Phaseolus vulgaris L. cv. Moldavian) was isolated from germinating kidney bean seeds and partially characterized. According to its properties it may be classified as a member of a group of homologous cysteine proteinases A, also present in germinating seeds of a number of other plants. The proteinase of this group hydrolyze storage proteins to short peptides. Similarly, the kidney bean proteinase hydrolyzes vicilin, the reserve protein of vetch ( Vicia sativa ). However, its action on phaseolin is limited to the cleavage of subunits into two approximately equal parts and to the splitting off a small number of short peptides. An explanation of phaseolin resistance to the action of this proteinase is proposed on the basis of the differences of its structure from that of other homologous 7S proteins.  相似文献   

16.
Sporothrix schenckii produces two extracellular proteinases, namely proteinase I and II. Proteinase I is a serine proteinase, inhibited by chymostatin. On the other hand, proteinase II is an aspartic proteinase, inhibited by pepstatin. The addition of either pepstatin or chymostatin to the culture medium did not inhibit cell growth, however the addition of both inhibitors strongly inhibited fungal growth. Accordingly, this suggested that extracellular proteinases play an important role in cell growth and that such cell growth may be suppressed if these proteinases are inhibited. In order to substantiate this speculation in sporotrichosis, the effects of proteinase inhibitors on the cutaneous lesions of mice were studied. Ointments containing 0.1% chymostatin, 0.1% pepstatin and 0.1% chymostatin-0.1% pepstatin were applied twice daily on the inoculation sites of hairless mouse skin, and the time courses of the lesions examined. The inhibitory effect in vivo onS. schenckii was similar to that demonstrated in our previous in vitro study. Compared to the control, the time course curve of the number of nodules present after the application of either pepstatin or chymostatin was slightly suppressed. The application of both pepstatin and chymostatin, however, strongly suppressed nodule formation. This study not only confirmed the role of 2 proteinases ofS, schenckii for fungal growth in vivo, but also may lead to their use as new topical therapeutic agents.  相似文献   

17.
Sporothrix schenckii, mainly in the yeast form of the organism, produced extracellular proteinases when cultivated in liquid media containing albumin or collagen as a nitrogen source, but did not do so in brain heart infusion medium. Isolation of two extracellular proteinases from albumin-containing medium was performed by chromatography on DEAE-Sepharose CL-6B and Sephacryl S-200. Proteinase I had a molecular weight of 36,500, an optimal pH at 6.0, and a pI at 4.8. Despite its activities in weakly acidic conditions, proteinase I demonstrated chymotrypsinlike characteristics, these being indicated by strong inhibitory activity by phenylmethylsulfonyl fluoride and chymostatin and good kinetic constants for a synthetic chymotrypsin substrate, Suc-Ala-Ala-Pro-Phe-MCA. Proteinase II had a molecular weight of 39,000, an optimal pH at 3.5, and a pI at 3.8. Proteinase II showed cathepsin D-like characteristics, these being indicated by strong inhibitory activity by pepstatin, an acidic optimal pH, and good kinetic constants for hemoglobin. These two enzymes hydrolyzed natural substrates such as stratum corneum, type I collagen, and elastin although not type IV collagen. Proteinase production and cell growth in collagen-containing medium and the enzymatic digestion of skin constituents by isolated proteinases suggested that these two proteinases cooperatively enable the organism to invade skin and to obtain peptides from insoluble proteins.  相似文献   

18.
A spectrophotometric assay was devised to characterize the asparaginyl (Asn) endopeptidase activity from the endosperm of castor oil seeds. (Ricinus communis L. var. Baker 296). The assay measures the release of p-nitroaniline from the hydrolysis of benzoyl-l-Asn-p-nitroanilide. Assay sensitivity was improved through diazotization of the reaction product with N(]-napthy])-ethylenediamine dihydrochloride: diazotized p-nitroaniline was determined spectrophotometrically at 548 nm (?548= 1.64 × 10?1M?1 cm?2). By using this assay. Asn endopeptidase activity was detected in endosperm extracts of developing, mature and germinating castor seeds. Comparison of the Asn endopeptidase activities of developing and germinating castor endosperms revealed that they: 1) have identical pH-activity profiles with optimal activity occuring at pH 5.4: 2) are heat-labile proteins displaying comparable thermal stability profiles, and 3) are activated and inhibited by dithiothreitol and thiol modifying reagents, respectively. Thus, the Asn endopeptidases of developing and germinating castor seeds are very similar, if not identical, cysteine proteases. The most significant increase in the activity of endosperm Asn endopeptidase occurs during the full coryledon to maturation stage of seed development, this period coincides with the most active phase of reserve protein accumulation by ripening castor oil seeds. Asn endopeptidase activity of fully mature (dry) castor seeds was about 2-fold lower than that of muturation stage ripening castor oil seed. Asn endopeptidase activity showed a slight reduction over the inicial 2-day period following seed imbibition, and then rapidly decreased over the next several days of germination. The results are compatible with the proposal that Asn endopeptidase functions both to process storage preproteins following their import into protein bodies of developing seeds, as well as to participate in the mobilization of storage proteins during the early phase of seed germination.  相似文献   

19.
Germinating seeds of Euphorbia heterophylla L. contain endo-1,4-beta-glucanases which degrade carboxymethylcellulose (CMC). The activity decreased approximately 66% in extracts of endosperm containing isopropanol or ethanol. The endoglucanases were isolated from endosperm extracts using ammonium sulphate fractionation followed by Sephacryl S-100-HR chromatography resulting in two main peaks: I and II. Peak I endoglucanase was further purified about 15-fold on DEAE-Sephadex A50 and then by affinity chromatography (CF11-cellulose). Peak II endoglucanases were further purified 10-fold on CM-cellulose chromatography. The results indicated the occurrence of a 66 kDa endoglucanase (fractionated by SDS-PAGE and visualized by activity staining using Congo Red). Several acidic (pI 3.0 to 5.7) and basic (pI 8.5 to 10.0) forms from both peaks which differed in their capacities for degrading CMC or xyloglucans from Copaifera langsdorffii or Hymenaea courbaril were detected.  相似文献   

20.
The Hydrolysis of Endosperm Protein in Zea mays   总被引:14,自引:10,他引:4       下载免费PDF全文
Harvey BM  Oaks A 《Plant physiology》1974,53(3):453-457
Degradation of the major storage proteins in maize endosperm, zein and glutelin, begins during the 2nd day of germination. The protein most abundant in the mature endosperm is degraded most rapidly. The patterns of protein loss are essentially similar in germinating seeds and excised endosperms. Cycloheximide, added at the beginning of the incubation period, prevents the development of α-amylase and protease activities and the disappearance of starch and protein reserves. Late additions (70 hours) of cycloheximide still inhibit the increase in hydrolase activity but have no effect on the hydrolysis of storage reserves. The results indicate that the hydrolytic enzymes are synthesized de novo in the maize endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号