首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detrimental effects of vines on tree growth in successional environments have been frequently reported. Little is known, however, about the relative importance of below and aboveground competition from vines on tree growth. The objective of this study was to quantify and compare the growth responses of Liquidambar styraciflua saplings to below and/or aboveground competition with the exotic evergreen vine, Lonicera japonica (Japanese honeysuckle), and the native deciduous vine, Parthenocissus quinquefolia (Virginia creeper). Soil trenching and/or vine-trellising were used to control the type of vine competition experienced by trees. Comparisons among untrenched treatments tested for effects of belowground competition. Comparisons among trenched treatments tested for effects of aboveground competition. After two growing seasons, Lonicera japonica had a greater effect on the growth of L. styraciflua than did P. quinquefolia. This effect was largely due to root competition, as canopy competition only had a negative effect on tree growth when it occurred in combination with root competition. Leaf expansion was consistently and similarly affected by all treatments which involved belowground competition.  相似文献   

2.
Acherar  M.  Rambal  S. 《Plant Ecology》1992,(1):177-184
The water relations and responses of two evergreen (Quercus ilex L. and Q. suber L.) and two deciduous (S. afares Pomel. and Q. faginea Will.) Quercus species were studied under experimental conditions. Two-year old seedlings grown in 30 l. pots were subjected to a drying period during which stomatal conductance, pre-dawn potential and minimum foliar potential were measured.The results shows that, for all species, the daily course of stomatal conductance agrees with the patterns proposed by Hinckley et al. (1978 & 1983). Concurrent with the species responses to short-term variation in water availability, it was found that pre-dawn leaf water potential controlled the maximum daily leaf conductance. There was a strong correlation between pre-dawn leaf potential and maximum daily conductance as described by the reciprocal function gsrmax for=(-0.47+2.61.p)-1 the evergreen oaks and gsrmax for=(-1.94+7.39.p)-1 for the deciduous species. These differences between the two groups may partialy explain their geograhic distributions, and suggest general questions concerning the mechanisms which optimize water-use efficiency in Mediterranean oak species.  相似文献   

3.
Water relations of stem succulent trees in north-central Baja California   总被引:6,自引:0,他引:6  
Summary Water relations of several stem succulent trees were measured in north-central Baja California in comparisons to other growth forms in the same habitat. Our research concentrated on three stem succulent species (Idria collumnaris, Pachycormus discolor and Bursera microphylla) each with a different succulent stem morphology. The stem succulent trees had 1 to 4 kg H2O/m3 of trunk while the other trees and shrubs in the same habitat had 0.6 to 0.8 kg H2O/m3. The diurnal and seasonal variation in leaf water potential was small for the stem succulent species in comparison to deciduous and evergreen species as a consequence of the stem-water, buffering capacity. In addition, the leaf conductance of the stem succulent species was low (60 mmol m–2 s–1) and yet, the leaf conductance decreased through the day similar to adjacent evergreen and deciduous species. The leaves of the stem succulent trees lost turgor at low saturated water deficits (0.06 to 0.14), had comparatively high osmotic potentials, and high values of elastic modulus in comparison to adjacent evergreen and deciduous species. The stem acts as an important buffering mechanism allowing for the maintenance of leaf turgor in these stem succulent trees. The low transpiration rates of the stem succulent trees may be a mechanism to minimize leaf saturated water deficit and extend leaf longevity.  相似文献   

4.
中国黄连属6种1变种分属叶掌状三全裂和叶掌状五全裂2个类群,前者包括三角叶黄连、峨眉黄连、云南黄连、黄连和其变种短萼黄连;而分布于滇东南的五裂黄连和产于台湾的五叶黄连则归于后者。采用根尖压片法和卡宝品红染色法,对除五叶黄连外的中国黄连属5种1变种,以及日本黄连进行染色体核型比较分析,从细胞学角度为探讨中国黄连属植物的系统分类提供新的线索和证据。结果表明:(1)五裂黄连(2n=2x=18=2M+16m)、短萼黄连(2n=2x=18=8m+10sm)和日本黄连(2n=2x=18=12m+6sm)的染色体数目和核型均为首次报道。(2)7个材料的染色体基数均为9,除三角叶黄连为三倍体外,其余均为二倍体。(3)叶为掌状三全裂的二倍体种核型一致,为2A型,染色体类型以及不对称系数均很相似;叶为掌状五全裂的五裂黄连与五叶黄连的核型更接近,为1A型,核型特征的共性表明了这2个类群的自然属性。(4)三倍体三角叶黄连的不对称程度较高,核型为3A型,其染色体大小与峨眉黄连最接近。(5)根据核型不对称程度和染色体大小,结合地理分布,推测叶掌状五全裂种为本属的原始类群。  相似文献   

5.
We used experimental defoliations to examine the effect of leaf age on the timing of leaf shedding in two tropical dry forest trees. Trees of the deciduous Bombacopsis quinata (bombacaceae, a.k.a. Pachira quinata) and the brevi-deciduous Astronium graveolens (anacardiaceae) were manually defoliated for three times during the rainy season. All trees started to produce a new crown of leaves 2 weeks after defoliation, and continued expanding leaves throughout the rainy season. At the transition to the dry season, the experimental groups consisted of trees with known differences in maximum leaf age. Defoliations resulted in declines in stem growth but did not affect the mineral content or water relations of the leaves subsequently produced. There was no effect of leaf age on the timing of leaf abscission in B. quinata. In A. graveolens, the initiation of leaf shedding followed in rank order, the maximum leaf age of the four treatments, but there was substantial coherence among treatments in the major period of leaf abscission such that trees completed leaf shedding at the same time. In the two species, leaf water potential (ΨL) and stomatal conducantce (g S) declined with the onset of the dry season, reaching minimum values of –0.9 MPa in P. quinata and <–2.0 MPa in A. graveolens. Within each species, leaves of different age exhibited similar ΨL and g S at the onset of drought, and then decreased at a similar rate as the dry season progressed. Overall, our study suggests that the environmental factors were more important than leaf age in controlling the timing of leaf shedding.  相似文献   

6.
Seasonal patterns of growth, water relations, photosynthesis and leaf characteristics were compared between obligate seeders (Cistus monspeliensis and Cistus ladanifer) and resprouters (Arbutus unedo and Pistacia lentiscus) from the first to the second year after fire. We hypothesized that seedlings would be more water-limited than resprouts due to their shallower root systems. Regarding water use strategies, Cistus species are drought semi-deciduous and A. unedo and P. lentiscus are evergreen sclerophylls, therefore, comparisons were based on the relative deviation from mature conspecific plants. Seedlings and resprouts had higher shoot elongation and leaf production than mature plants, and over an extended period. Differences from mature plants were larger in resprouts, with two-fold transpiration, leaf conductance and photosynthesis in late spring/early summer. Seedlings of C. monspeliensis exhibited higher transpiration and leaf conductance than mature plants, while those of C. ladanifer only exhibited higher water potential. Growth increments and ameliorated water relations and photosynthesis after fire were attributed to an increase in water and nutrient availability. The small differences in water relations and photosynthesis between seedlings and mature conspecifics are in accordance with the prediction of seedlings experiencing higher water limitation than resprouts. We attribute these results to differences in root systems: resprouters benefited from an increase in root/shoot ratios and the presence of deep roots whereas Cistus seedlings relied on very shallow roots, which cannot provide assess to deep water during summer. Nevertheless, seedlings did not show evidence of experiencing a more severe water limitation than mature conspecifics, which we attributed to the presence of efficient mechanisms of avoiding and tolerating water stress. The results are discussed in relation to post-fire demography of seeders and resprouters in Mediterranean communities.  相似文献   

7.
In the area of Jumla region in Western Nepal, measurements of saturated leaf net photosynthetic rate (Psat), nitrogen content, leaf fluorescence, carbon isotopic composition, and water status were performed on woody coniferous (Pinus wallichiana, Picea smithiana, Abies spectabilis, Juniperus wallichiana, Taxus baccata), evergreen (Quercus semecarpifolia, Rhododendron campanulatum), and deciduous broadleaved species (Betula utilis, Populus ciliata, Sorbus cuspidata) spreading from 2 400 m up to the treeline at 4 200 m a.s.l. With the exception of J. wallichiana, Psat values were lower in coniferous than broadleaved species. Q. semecarpifolia, that in this area grows above the coniferous belt between 3 000 and 4 000 m, showed the highest Psat at saturating irradiance and the highest leaf N content. This N content was higher and Psat lower than those of evergreen oak species of tempe forests at middle and low altitudes. For all species, Psat and N content were linearly correlated, but instantaneous nitrogen use efficiency was lower than values measured in lowland and temperate plant communities. The values of carbon isotopic composition, estimated by 13C, showed the same range reported for temperate tree species. The ranking of 13C values for the different tree types was conifers < evergreen broadleaved13C were found along the altitudinal gradient. Quantum yield of photochemistry at saturating irradiance, measured by leaf fluorescence (F/Fm), was highest in J. wallichiana and lowest in T. baccata. Overall, photochemical efficiency was more strongly related to species than to altitude. Interestingly, changes of .F/Fm along the altitudinal gradient correlated well with the reported altitudinal distribution of the species.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

8.
An evergreen oak species, Cyclobalanopsis multinervis, and a deciduous oak species, Quercus aliena var. acuteserrata were grown from acorns under two light levels (full sunlight and shade at about 18 % of full sunlight, simulating the light intensities in forest clearings and gaps, respectively) for one growing season. Three hypotheses were tested: (i) the deciduous species grows faster than the evergreen species in forest gaps and clearings; (ii) the deciduous species responds more strongly in terms of growth and morphology to variation in light climate than the evergreen species; and (iii) seedling size is positively correlated to acorn size. The results showed: (i) at both light levels, the deciduous seedlings gained significantly more growth in biomass and height than the evergreen seedlings; (ii) both species produced significantly more biomass in full sunlight than in shade, without showing any significant difference in height between treatments. Increase in light intensity improved the growth of the deciduous seedlings more strongly; (iii) at a similar age, the deciduous seedlings showed a greater response in leaf morphology and biomass allocation to variation in light levels, but when compared at a similar size, biomass allocation patterns did not differ significantly between species; (iv) bigger acorns tended to produce larger seedlings, larger leaf sizes and more leaf area, between and within species. These differences demonstrate that the deciduous species is gap-dependent and has the advantage over the evergreen species in forest gaps and clearings.  相似文献   

9.
Seasonal courses of leaf CO2 gas exchange in a growing season were examined in saplings ofThujopsis dolabrata var.hondai andQuercus mongolica var.grosseserrata in a cool temperate deciduous forest. Between the two tree species there were no large differences in the light compensation point of leaf photosynthesis, except for the season of new leaf expansion. However, light-saturated rates of net photosynthesis were obviously high inT. dolabrata var.hondai. EvergreenT. dolabrata var.hondai saplings had large photosynthetic production in two seasons, before the emergence of new foliage and after foliage fall of the overstory deciduous trees, because of the significantly high solar radiant energy penetrating under the forest canopy during the seasons. Saplings of deciduousQ. mongolica var.grosseserrata were heavily shaded throughout the growing season by foliage of the overstory trees, which resulted in a low daily surplus production. The annual surplus production of leaves in the growing season was estimated to be 2300 mmol CO2 m−2 inT. dolabrata var.hondai and −100 mmol CO2 m−2, slightly negative, inQ. mongolica var.grosseserrata. These results supported the high survivability ofT. dolabrata var.hondai saplings and the high mortality ofQ. mongolica var.grosseserrata in the deciduous forest.  相似文献   

10.
Negative interactions between non-indigenous and native species has been an important research topic of invasion biology. However, interactions between two or more invasive species may be as important in understanding biological invasions, but they have rarely been studied. In this paper, we describe three field experiments that investigated interactions between two non-indigenous plant species invasive in the eastern United States, Lonicera japonica (a perennial vine) and Microstegium vimineum (an annual grass). A press removal experiment conducted within a deciduous forest understory community indicated that M. vimineum was a superior competitor to L. japonica. We tested the hypothesis that the competitive success of M. vimineum was because it overgrew, and reduced light available to, L. japonica, by conducting a separate light gradient experiment within the same community. Shade cloth that simulated the M. vimineum canopy reduced the performance of L. japonica. In a third complementary experiment, we added experimental support hosts to test the hypothesis that the competitive ability of L. japonica is limited by support hosts, onto which L. japonica climbs to access light. We found that the abundance of climbing branches increased with the number of support hosts. Results of this experiment indicate that these two invasive species compete asymmetrically for resources, particularly light.  相似文献   

11.
Most Malagasy primate communities harbor a diverse assemblage of omnivorous species. The mechanisms allowing the coexistence of closely related species are poorly understood, partly because only preliminary data on the feeding ecology of most species are available. We provide an exemplary feeding ecology data set to illuminate coexistence mechanisms between sympatric gray and Madame Berthe’s mouse lemurs (Microcebus murinus, M. berthae). We studied their feeding ecology in Kirindy Forest/CFPF, a highly seasonal dry deciduous forest in western Madagascar. Between August 2002 and December 2007, we regularly (re-)captured, marked, and radiotracked females of both species. A combination of direct behavioral observations and fecal analyses revealed that both Microcebus species used fruit, arthropods, gum, insect secretions, and small vertebrates as food sources. However, Microcebus berthae and M. murinus differed in both composition and seasonal variation of their diets. Whereas the diet of Microcebus murinus varied seasonally and was generally more diverse, M. berthae relied mainly on insect secretions supplemented by animal matter. The differences were also reflected in a very narrow feeding niche of Microcebus berthae and a comparatively broad feeding niche of M. murinus. Resource use patterns of Madame Berthe’s and more so of opportunistic gray mouse lemurs broadly followed resource availability within the strongly seasonal dry forest. Feeding niche overlap between the 2 sympatric species was high, indicating that food resource usage patterns did not reflect niche partitioning, but can instead be explained by constraints due to food availability.  相似文献   

12.
The water lily beetle Galerucella nymphaeae L. (Coleoptera: Chrysomelidae) exploits different hosts, including Nuphar lutea Sm. and Nymphaea alba L. (both Nymphaeaceae), as well as Polygonum amphibium L. and Rumex hydrolapathum Hudson (both Polygonaceae). The present study investigates whether within-species differences in morphological and reproductive traits are associated with differences in host species exploitation. A total of 1103 adult beetles were collected from 11 localities in The Netherlands, one of which contained all four hosts and three other localities contained hosts from both families (sympatric localities). Adults originating from Nuphar and Nymphaea were on average darker in colour and larger in size and had disproportionally bigger mandibles than beetles originating from Polygonum and Rumex across the 11 localities. Head capsules of first instar larvae from Nymphaeaceae hosts were between 17% and 28% larger than those of larvae from Polygonaceae hosts. Furthermore, beetles from Nuphar and Nymphaea laid larger sized eggs, but fewer eggs per clutch than beetles originating from Polygonum and Rumex. Although host related variation was less pronounced at the sympatric localities than in the allopatric localities, differences in larval and adult size were still highly significant at the sympatric localities. It is not clear whether the observed differences are genetically based, as opposed to host induced. However, leaf toughness varied among species in a way suggesting that leaf toughness may be partly responsible for host related differences in G. nymphaeae.  相似文献   

13.
Karban R 《Oecologia》2007,153(1):81-88
Deciduous leaf fall is thought to be an adaptation that allows plants living in seasonal environments to reduce water loss and damage during unfavorable periods while increasing photosynthetic rates during favorable periods. Observations of natural variation in leaf shedding suggest that deciduous leaf fall may also allow plants to reduce herbivory. I tested this hypothesis by experimentally manipulating leaf retention for Quercus lobata and observing natural rates of herbivory. Quercus lobata is primarily deciduous although individuals show considerable natural variation in leaf retention. Oak saplings with no leaves through winter experienced reduced attack by cynipid gall makers the following spring. This pattern was consistent with the positive correlation between natural leaf persistence and gall numbers. These cynipids do not overwinter on the leaves that trees retain through winter, although they appear to use persistent leaves as oviposition cues. If these results are general for woody plants in continental temperate habitats, they suggest that an important and unrecognized consequence of deciduous leaf shedding may be a reduction in herbivore damage, and that this effect should be included in models of deciduous and evergreen behavior.  相似文献   

14.
潘君  王传宽  王兴昌 《生态学报》2021,41(13):5166-5174
根系分解对土壤碳固持和养分长期有效性具有重要意义,但目前对根系的长期分解模式仍知之甚少。比较3个温带阔叶树种不同直径根系7 a分解动态,可为生态过程模型提供数据支撑。在帽儿山生态站采用分解袋法对白桦(Betula platyphylla)、春榆(Ulmus davidiana var.japonica)、水曲柳(Fraxinus mandshurica)的5个直径等级(< 1 mm)、(1-2 mm)、(2-5 mm)、(5-10 mm)、(10-20 mm)根系进行了7 a野外分解实验。重复测量方差分析表明:时间、树种、直径与树种交互作用、树种与时间交互作用显著影响根系质量保持率。根系质量保持率随时间呈指数下降趋势,7 a间根系经历早期快速分解和后期慢速分解两个阶段,实验结束时根系仍剩余相当部分的初始质量(24%-56%)。利用Olson指数衰减模型估计各树种根系分解系数发现:白桦根系分解系数与根直径间具有显著的线性正相关关系,水曲柳具有显著对数正相关关系,春榆的关系不显著。3个树种短期分解系数均高估根系分解速率,而且不能完全代表长期分解系数的种内、种间差异。研究结果对理解根系长期分解速率随直径变化模式提供了数据支撑。  相似文献   

15.
To clarify mortality patterns of current-year shoots within the crown of Betula maximowicziana Regel after severe insect herbivory in central Hokkaido, northern Japan, we investigated the degree of defoliation, pattern of shoot development, shoot mortality, and leaf tissue-water relations. One hundred current-year long shoots growing in a B. maximowicziana plantation were observed for defoliation and mortality in June 2002. An outbreak of herbivorous insects (Caligula japonica and Lymantria dispar praeterea) occurred in the stand in mid-to-late June, and the monitored shoots were defoliated to various degrees. Within 1 month of defoliation, some of the severely defoliated shoots had produced new leaves on short shoots that had emerged from axillary buds. Stepwise logistic regression revealed that the probability that current-year long shoots would put out axillary short shoots with leaves is closely related to the degree of defoliation. To evaluate the water relations of the leaves, we determined pressure–volume curves for the leaves that survived the herbivorous insect outbreak and the new leaves that emerged after defoliation. The water potential at turgor loss (Ψl,tlp) and the osmotic potential at full turgidity (Ψπ,sat) were higher for the new leaves than for the surviving leaves, indicating a lower ability to maintain leaf cell turgor against leaf dehydration in the new leaves. Of the 100 shoots, 13 died after the emergence of new leaves. Stepwise logistic regression revealed that the probability that the long shoots would die generally increased with the emergence of new leaves, with increasing shoot height. This result suggests that the combined effect of the vulnerability of newly emerged leaves and low water availability, associated with higher shoot positions within the crown, caused shoot mortality. Based on our results, some possible mechanisms for mortality in severely defoliated B. maximowicziana are discussed.  相似文献   

16.
The regeneration process in a mixed forest was investigated in Nopporo National Forest, Hokkaido. The analysis of age structure in an 80 m×80 m plot revealed that almost all of the species regenerated intermittently. In eleven gaps observed in the plot, the regeneration of a boreal conifer (Abies sachalinensis) was seldom observed. Temperate hardwoods, even climax species (Acer mono, Quercus mongolica var. grosseserrata, Tilia japonica), regenerated vigorously in the gaps. The age structure in ten additional plots scattered all over the forest showed that Abies tended to regenerate synchronously. From previous records, regeneration of Abies could be ascribed to catastrophic storms causing serious windfalls. On the other hand, regeneration of the temperate hardwoods was not synchronous but independent in different places within the forest. They could regenerate not only after those catastrophic storms but also after less severe disturbances which caused the death and fall of one or several trees. It is concluded that the coexistence of boreal coniferous species and temperate deciduous broad-leaved species in mixed forests may be maintained not only by the difference in habitat but also by the balance between the less frequent large disturbances, and the more frequent smaller ones.  相似文献   

17.
Summary Leaf diffusive conductance and transpiration rates in response to situations of high evaporative demand were measured in 40 Acacia species varying widely with regard to the morphological and anatomical characters of their assimilatory organs. The measurements took place in south-eastern and central Australia, central Africa and south-western Europe and included species of all three subgenera of Acacia Mill. Soil moisture conditions and consequently the water status of the experimental plants varied between the different measuring sites, some of which were regularly watered. All the species investigated showed a similar daily pattern of diffusive conductance with a morning peak and a subsequent decrease, which was more pronounced in plants growing under water stress, indicating a decisive stomatal regulation of transpiration. A relationship between the structure of assimilatory organs and leaf diffusive conductance or transpiration rates per unit surface area could not be detected in the Australian acacias. However, there are indications that the leaves of the non-Australian species operate on higher conductances than the foliage of the Australian ones. It is suggested that the observed differences in the performance of African and Australian acacias reflect the deciduous or evergreen nature of foliage rather than structural differences. In regard to taxon-specific differentiation this might implicate an ecophysiological character which separates the evergreen species of the geographically isolated subgenus Heterophyllum from the deciduous species of the subgenera Aculeiferum and Acacia with an overlapping area of distribution.  相似文献   

18.
Allelopathy is often treated as an innate characteristic of a species rather than a phenotypically plastic trait that can vary with environmental conditions. Lianas are a highly competitive, phenotypically plastic life form that typically occur in both shaded and unshaded environments. As such, we hypothesized that temperate lianas may conditionally change allocation to allelopathic chemicals in response to light availability though the expected direction of change is unclear. Shading may reduce resource availability and therefore reduce allocation to allelochemicals, induce allelopathy as a competitive mechanism, or may not be related to allelopathy. To test the conditionality of allelopathy, sun and shade leaves of five common liana species (Toxicodendron radicans, Parthenocissus quinquefolia, Celastrus orbiculatus, Lonicera japonica, and Vitis vulpina) were collected from a young deciduous forest in New Jersey, USA, and tested with laboratory bioassays to detect allelopathic potential. All liana species showed allelopathic potential, and three species exhibited induction of increased allelopathic potential in shaded environments. The two species that were not shade induced are late successional lianas that persist for long periods in forest canopies. In contrast, the inducible lianas were early successional species that typically decline with canopy closure. This research indicates that lianas have the potential to be allelopathic and allelopathic potential conditionally responds to shading only for species that would normally be excluded from the forest canopy. As early successional lianas are present throughout forest regeneration in a range of light environments, allelopathic plasticity may increase their success by differentially allocating resources based on environmental conditions.  相似文献   

19.
Competitive effects of vines on their tree hosts are well documented, but the mechanisms involved in these interactions are poorly understood. The objectives of this study were to measure the effects of below- and/or aboveground competition from the vines Lonicera japonica and Parthenocissus quinquefolia on availability of light, water, and nitrogen to the host tree Liquidambar styraciflua, and to examine the relationship between resource availability and tree growth. Light penetration through tree canopies, pre-dawn leaf water potential, and leaf nitrogen concentration were used as predictors of light, water, and nitrogen availability to the tree, respectively. Vine presence significantly reduced light penetration through the tree canopies, but this reduction was not clearly related to the growth responses of trees. Vines did not reduce the pre-dawn leaf water potential of competing trees, which was consistently above -0.5 MPa for the duration of the study. Leaf nitrogen concentration of trees, on the other hand, was significantly reduced by belowground competition with L. japonica. The positive correlation between the annual average leaf nitrogen concentration and tree diameter growth suggested that competition for nitrogen mediated the effects of belowground competition of vines on tree growth.  相似文献   

20.
The size and spatial distribution of home ranges in two sympatric field mouse species,Apodemus speciosus andApodemus argenteus, were revealed by the capture-recapture method in a temperate deciduous forest from June 1987 to June 1990. InA. speciosus, the home ranges of males were significantly larger tha those of females, and overlapped with those of other males and females during the breeding season. InA. argenteus, the home range of each male overlapped only that of a single female throughout the year. These results suggested thatA. speciosus was promiscuous or polygynous andA. argenteus was monogamous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号