首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bark beetle diversity at different spatial scales   总被引:3,自引:1,他引:2  
To determine how the scale of observation affects ecological patterns we studied bark beetle (Coleoptera, Scolytidae) diversity in southern Finland. A block covering 160 × 160 m of a forest was delimited in four stands of different site types. Each block was divided into 256 squares (10 × 10 m) in which the occurrence of bark beetle species was recorded. In addition, environmental variables describing site type, trees, and breeding material appropriate for bark beetles were measured. The species presence/absence data were combined at different scales of resolution (10 × 10 m. 20 × 20 m, 40 × 40 m, 80 × 80 m, 160 × 160 m). At the finest scale a recently thinned pine stand showed relatively high diversity compared to other study stands due to a few evenly distributed and abundant species. However, the species diversity increased faster toward larger scales in mature spruce stands with several sporadically distributed species. According to logistic regression analyses, breeding material and site characteristics explained the occurrence of most beetle species. However, these variables did not explain the occurrence of the six most frequent species, probably because the factors regulating their distribution and occurrence operate at larger scales.  相似文献   

2.
Detection of interspecific competition between insects is often sensitive to scaling. We give an example of scale-dependent interference between the weevil Curculio elephas and the moth Cydia splendana, which both have larvae that develop in the fruits of chestnut Castanea sativa. Measures at three scales were considered: chestnut, husk (with one to three fertile fruits) and tree. Data come from observations in the field over 14 years, complemented by experiments done directly in trees. Data on individual chestnut fruits revealed a marked statistical interference between the two insects. Experiments demonstrated that presence of a moth larva in a fruit usually inhibits weevil egg-laying. Conversely, weevil presence does not strongly modify moth larval behavior. Cases of double infestation often correspond to fruits first attacked by the weevil. With measures on husks, interference between the two insects was observed only in some trees; its intensity was always weaker than in the chestnuts themselves. At the scale of entire trees, rates of infestation by each insect are not correlated. Interference in chestnut fruits is interpreted by assuming that the weevil female either is sensitive to a repellent molecule originating from a moth larva or its frass, or can detect moth larval sounds. Mechanisms governing infestation rates from data per tree are discussed in relation to those found at fruit scale and to plant-insect interactions. The need to estimate available resources both from quantitative and qualitative points of view is emphasized.  相似文献   

3.
Considerable scientific effort has gone into examining how the spatial structure of habitat influences organism distribution and abundance in both theoretical and applied contexts. An emerging conclusion from these works is that the overall amount of habitat in the landscape matters most for species persistence and that more local attributes of habitat structure such as the size and arrangement of patches is of secondary importance. In this study, we quantify how and when the effects of habitat configuration (patch size and isolation) influence the density of three species of insects (Order: Diptera; Wyeomyia smithii , Metriocnemus knabi , Fletcherimyia fletcheri ) whose larvae are found exclusively in identical habitats (the water-filled leaves of pitcher plants – Sarracenia purpurea ) in a system that is naturally patchy at multiple spatial scales. We illustrate that relationships with configuration exist regardless of the overall amount of habitat in the broader landscape, and that there are distinct changes in the relationship between insect density and habitat configuration across multiple spatial scales. In general, patch size is more important within the movement range of the individual and isolation is important at larger, aggregation scales. Thus we demonstrate that a) both the amount and configuration of habitat are important attributes of species distribution; b) responses to measures of configuration can be scaled to processes such as movement and c) that hierarchical frameworks extending across very broad scales are essential for understanding how species respond to habitat structure and their role in ecosystem function.  相似文献   

4.
5.
Interspecific competition has been intensely studied as an organizing force in insect herbivore communities that can be mediated by changes in resource availability. We analyzed patterns of interspecific association of three species of gall-forming insects at shoot length class and shrub levels for Bauhinia brevipes through a null model program. Results show that shoots galled by three species were distributed independently among shoot length classes over 3-years, hence, no evidence of competition for shoots was found. Nevertheless, at the plant level our results suggest that there was a positive association. We found no evidence of any reciprocal negative effect because the density of species did not differ among shoot length classes. We suggest that this lack of pattern was probably due to: (a) host-plant resistance mediating interactions; (b) higher abundance of plant resource available, or (c) free-feeding herbivores mediating interactions by manipulating the resources used by gall-forming species.  相似文献   

6.
The processes underlying parasitoid community structure are little known. Stochastic niche-apportionment models provide one route to underlying assemblage rules in this and other groups. Previous work has applied this approach to parasitoids found on single host species in single populations. However, parasitoid communities are known to extend across multiple hosts and scales. The patterns of relative abundances generated by five niche-apportionment models were compared to those observed in assemblages of two sub-families of the Ichneumonidae, the Diplazontinae and Pimplinae, at landscape and patch scales, Yorkshire, UK. Three of the five models produced patterns that were significantly different to the observed pattern for all taxonomic levels at both spatial scales. The Diplazontinae fit the random fraction (RF) model at the landscape scale in broadleaved woods. This suggests that hierarchical structuring and biotic interactions may play a role in the structuring of Diplazontinae assemblages at this scale. In contrast the Pimplinae fit the RF model only at the patch scale and only at one site. However, the Pimplini tribe (all chiefly parasitoids of Lepidoptera) fit the random assortment (RA) model at both the landscape and the patch scales, whilst the Ephialtini tribe (wide range of hosts) fit no model at either scale. The ecological interpretation of the RA model suggests that the Pimplini tribe is an unsaturated assemblage, where some of the total available resources are unused. Our results show, through the fit of mechanistic niche-apportionment models, that the processes that may structure ichneumonid parasitoid assemblages are not consistent across taxa and spatial scales.  相似文献   

7.
Determinants of avian species richness at different spatial scales   总被引:9,自引:1,他引:9  
ABSTRACT. Studies of factors influencing avian biodiversity yield very different results depending on the spatial scale at which species richness is calculated. Ecological studies at small spatial scales (plot size 0.0025–0.4 km2) emphasize the importance of habitat diversity, whereas biogeographical studies at large spatial scales (quadrat size 400–50,000 km2) emphasize variables related to available energy such as temperature. In order to bridge the gap between those two approaches the bird atlas data set of Lake Constance was used to study factors determining avian species diversity at the intermediate spatial scales of landscapes (quadrat size 4–36 km2). At these spatial scales bird species richness was influenced by habitat diversity and not by variables related to available energy probably because, at the landscape scale, variation in available energy is small. Changing quadrat size between 4 and 36 km2, but keeping the geographical extension of the study constant resulted in profound changes in the degree to which the amount of different habitat types was correlated with species richness. This suggests that high species diversity is achieved by different management regimes depending on the spatial scale at which species richness is calculated. However, generally, avian species diversity seems to be determined by spatial heterogeneity at the corresponding spatial scale. Thus, protecting the diversity of landscapes and ecosystems appears to ensure also high levels of species diversity.  相似文献   

8.
9.
不同空间尺度三维建筑景观变化   总被引:3,自引:0,他引:3  
张培峰  胡远满 《生态学杂志》2013,32(5):1319-1325
以沈阳市铁西区建筑物三维信息为基础数据,从建筑高度、密度、体积与体形、分布均匀度与空间拥挤度等方面构建了三维建筑景观评价指标,分别从区域、功能分区和梯度带3个角度分析了三维建筑景观的变化特征.结果表明:从1997年到2008年,铁西区建筑向垂直方向扩张,建筑空间分布越来越不均匀,空间拥挤度、建筑平均体积与容积率逐渐增大;居住区平均高度、平均体积、覆盖率、容积率、空间拥挤程度最小,建筑分布最均匀;商业区除建筑高度变异系数和平均体形系数最小外,其余指标值最大;工业区高度变异系数和平均体形系数最大,空间分布最不均匀;从梯度带上看,建筑使用类型的差异决定了三维建筑景观的变化特征.  相似文献   

10.
11.
Predicting the impact of habitat change on populations requires an understanding of the number of animals that a given area can support. Depletion models enable predictions of the numbers of individuals an area can support from prey density and predator searching efficiency and handling time. Depletion models have been successfully employed to predict patterns of abundance over small spatial scales, but most environmental change occurs over large spatial scales. We test the ability of depletion models to predict abundance at a range of scales with black-tailed godwits, Limosa limosa islandica. From the type II functional response of godwits to their prey, we calculated the handling time and searching efficiency associated with these prey. These were incorporated in a depletion model, together with the density of available prey determined from surveys, in order to predict godwit abundance. Tests of these predictions with Wetland Bird Survey data from the British Trust for Ornithology showed significant correlations between predicted and observed densities at three scales: within mudflats, within estuaries and between estuaries. Depletion models can thus be powerful tools for predicting the population size that can be supported on sites at a range of scales. This greatly enhances our confidence in predictions of the consequences of environmental change.  相似文献   

12.
Clonal plants that are physiologically integrated might perceive and interact with their environment at a coarser resolution than smaller, non-clonal competitors. We develop models to explore the implications of such scale asymmetries when species compete for multiple depletable resources that are heterogeneously distributed in space across two patches. Species are either 'non-integrators', whose growth in each patch depends on resource levels in that patch alone, or 'integrators', whose growth is equal between patches and depends on average resource levels across patches. Integration carried both benefits and costs. It tended to be advantageous in poorer patches, where the integrators drew resources down further than the non-integrators (more easily excluding competitors) and might persist by using resources from richer adjacent patches. Integration tended to be disadvantageous in richer patches, where integrators did not draw resources down as far (creating an opportunity for competitors) and could be excluded due to the cost of supporting growth in poorer adjacent patches. Complementarity between patches (each rich in a separate resource) favoured integrators. Integration created new opportunities for local coexistence, and for delayed susceptibility of patches to invasion, but eliminated some opportunities for regional coexistence. Implications for the interpretations of species' zero net growth isoclines and Rs are also discussed.  相似文献   

13.
Predators that have an increasing numerical response for aggregation, attack and oviposition to increasing prey density are thought to be ideal for biological control. However density-dependent processes are infrequently detected and explanations include differences in the scales at which observations are made, behavioral differences among species, and habitat features. We examined the aggregation of four species of colonizing adult coccinellids to varying prey densities at two spatial scales in a maize system. Three of the species, Adalia bipunctata, Hippodamia tredecimpunctata, and Hippodamia convergens, responded to aphid abundance at the plant scale, and one species, Coleomegilla maculata, responded to the average aphid density at the plot (10×10 m) scale. In addition, H. convergens responded to individual plants with high aphid abundance in those plots with many plants of high aphid abundance. These results suggests that C. maculata (and possibly H. convergens) may be better able to colonize fields before aphid populations reach high levels, whereas A. bipunctata and H. tredecimpunctata may only be able to respond to high aphid abundance at the plant scale. This study suggests that spatial scale can affect predator–prey dynamics in a species-specific manner. However, the differences among coccinellid species in the community appear to be complementary, potentially contributing to greater aphid suppression.An erratum to this article can be found at  相似文献   

14.
The morphology of species can be used to represent their ecological position and infer potential processes determining the structure of species assemblages. This ecomorphological approach has been widely applied to the study of bat assemblages which mainly focuses on a single spatial scale and particular guilds. We extended such an ecomorphological approach to a multi-scale analysis of a Neotropical bat assemblage and its constituent guilds (aerial and gleaning insectivores, frugivores, and nectarivores) to describe their structure at different spatial scales and determine the relative importance of inter-specific competition, habitat filtering, or stochastic processes shaping such structures. We measured the occupied morphological space (size) defined by wing and skull morphology independently and the nearest-neighbour distance (structure) among species within these spaces at each spatial scale. Observed patterns were compared with random expectations derived from null models for statistical inference. When controlling for species richness and regional sampling effects in the null models, we did not find a significant effect of spatial scale in the morphological structure of the studied bat assemblage and guilds. Morphological structure followed the same patterns across scales as those expected from random drawings of sample size alone. Similar results were obtained regardless of morphological complex (wing and skull) and guilds. At both the assemblage and guild levels, bat morphological structure seems to be determined by regional, abiotic processes (e.g. habitat filtering) shaping the composition and organization of the species pool.  相似文献   

15.
Understanding the effects of disturbance and secondary succession on spatio-temporal patterns in the abundance of species is stymied by a lack of long-term demographic data, especially in response to infrequent and high intensity disturbances, such as hurricanes. Moreover, resistance and resilience to hurricane-induced disturbance may be mediated by legacies of previous land use, although such interactive effects are poorly understood, especially in tropical environments. We address these central issues in disturbance ecology by analyzing an extensive dataset, spanning the impacts of Hurricanes Hugo and Georges, on the abundance of a Neotropical walking stick, Lamponius portoricensis, in tabonuco rainforest of Puerto Rico during the wet and dry seasons from 1991 to 2007. By synthesizing data from two proximate sites in tabonuco forest, we show that resistance to Hurricane Hugo (97% reduction in abundance) was much less than resistance to Hurricane Georges (21% reduction in abundance). Based on a powerful statistical approach (generalized linear mixed-effects models with Poisson error terms), we documented that the temporal trajectories of abundance during secondary succession (i.e., patterns of resilience) differed between hurricanes and among historical land use categories, but that the effects of hurricanes and land use histories were independent of each other. These complex results likely arise because of differences in the intensities of the two hurricanes with respect to microclimatic effects (temperature and moisture) in the forest understory, as well as to time-lags in the response of L. portoricensis to changes in the abundance and distribution of preferred food plants (Piper) in post-hurricane environments.  相似文献   

16.
选择北美洲72座通量塔观测的净生态系统碳交换(NEE)数据来计算植被物候,并以此作为参考数据,从可行性和准确性两方面对阈值法、移动平均法和函数拟合法三大类常用的植被物候遥感识别方法进行了综合评价.结果表明: 基于局部中值的阈值法对植被物候识别的可行性和准确性均最优;其次为Logistic函数拟合法中的一阶导数方法;移动平均法对植被物候识别的可行性和准确性与移动窗口的大小有关,对于16 d合成的归一化差值植被指数(NDVI)时间序列数据来说,移动窗口大小为15时能获得较优的结果;而全局阈值法对植被物候识别的可行性和准确性均最差;Logistic函数拟合法中的曲率变化率方法在识别植被物候时虽然与基于NEE数据得到的植被物候在数值上存在较大偏差,但二者之间具有较高的相关性,说明基于曲率变化率方法识别出的植被物候能较真实地反映植被物候在时空上的变化趋势.  相似文献   

17.
18.
Coexistence in bumblebee communities has largely been investigated at local spatial scales. However, local resource partitioning does not fully explain the species diversity of bumblebee communities. Theoretical studies provide new evidence that partitioning of space can promote species coexistence, when species interact with their environment at different spatial scales. If bumblebee species possess specific foraging ranges, different spatial resource utilisation patterns might operate as an additional mechanism of coexistence in bumblebee communities. We investigated the effects of the landscape-wide availability of different resources (mass flowering crops and semi-natural habitats) on the local densities of four bumblebee species at 12 spatial scales (landscape sectors with 250–3,000 m radius) to indirectly identify the spatial scales at which the bumblebees perceive their environment. The densities of all bumblebee species were enhanced in landscapes with high proportions of mass flowering crops (mainly oilseed rape). We found the strongest effects for Bombus terrestris agg. and Bombus lapidarius at large spatial scales, implying foraging distances of 3,000 and 2,750 m, respectively. The densities of Bombus pascuorum were most strongly influenced at a medium spatial scale (1,000 m), and of Bombus pratorum (with marginal significance) at a small spatial scale (250 m). The estimated foraging ranges tended to be related to body and colony sizes, indicating that larger species travel over larger distances than smaller species, presumably enabling them to build up larger colonies through a better exploitation of food resources. We conclude that coexistence in bumblebee communities could potentially be mediated by species-specific differences in the spatial resource utilisation patterns, which should be considered in conservation schemes.  相似文献   

19.
While investigating biodiversity patterns on different spatial scales, ecological processes determining these patterns have been rarely analysed. Flower visitation by bees is an important ecological process that is related to floral resource availability. However, little is known about whether responses of bee communities to floral resource availability change at different spatial scales. We studied density and species richness of flower-visiting bees in relation to floral resource availability, provided by coffee, in traditional agroforestry systems on a field, shrub, and branch scale. On a field scale, mean bee density per shrub increased with decreasing proportion of flowering coffee shrubs per site, showing a dilution effect. Conversely, on shrub and branch scales bee density per shrub, or shrub part, increased with increasing number of inflorescences, showing a concentration effect. Additionally, bee density per shrub was higher on those that were only partly, rather than totally surrounded by other flowering coffee shrubs. Species richness of flower-visiting bees was positively affected by high resource availability on a shrub and a branch scale, expressed by a high number of inflorescences, but at the field scale the proportion of flowering shrubs per site did not have any effect on species richness. Our results show contrasting responses of the community of flower-visiting bees to floral resource availability, depending on the spatial scale considered. We conclude that patterns of flower-visiting bee communities of only one spatial scale can not be generalized, since the number of pollinators may be limited on a field scale, but not on smaller scales.  相似文献   

20.
Pesticides are an important potential cause of biodiversity and pollinator decline. Little is known about the impacts of pesticides on wild pollinators in the field. Insect pollinators were sampled in an agricultural system in Italy with the aim of detecting the impacts of pesticide use. The insecticide fenitrothion was over 150 times greater in toxicity than other pesticides used in the area, so sampling was set up around its application. Species richness of wild bees, bumblebees and butterflies were sampled at three spatial scales to assess responses to pesticide application: (i) the ‘field’ scale along pesticide drift gradients; (ii) the ‘landscape’ scale sampling in different crops within the area and (iii) the ‘regional’ scale comparing two river basins with contrasting agricultural intensity. At the field scale, the interaction between the application regime of the insecticide and the point in the season was important for species richness. Wild bee species richness appeared to be unaffected by one insecticide application, but declined after two and three applications. At the landscape scale, the species richness of wild bees declined in vine fields where the insecticide was applied, but did not decline in maize or uncultivated fields. At the regional scale, lower bumblebee and butterfly species richness was found in the more intensively farmed basin with higher pesticide loads. Our results suggest that wild bees are an insect pollinator group at particular risk from pesticide use. Further investigation is needed on how the type, quantity and timing of pesticide application impacts pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号