首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aspergillus niger produces oxalic acid through the hydrolysis of oxaloacetate, catalyzed by the cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH). The A. niger genome encodes four additional open reading frames with strong sequence similarity to OAH yet only the oahA gene encodes OAH activity. OAH and OAH-like proteins form subclass of the isocitrate lyase/PEP mutase enzyme superfamily, which is ubiquitous present filamentous fungi. Analysis of function-specific residues using a superfamily-based approach revealed an active site serine as a possible sequence marker for OAH activity. We propose that presence of this serine in family members correlates with presence of OAH activity whereas its absence correlates with absence of OAH. This hypothesis was tested by carrying out a serine mutagenesis study with the OAH from the fungal oxalic acid producer Botrytis cinerea and the OAH active plant petal death protein as test systems.  相似文献   

2.
Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range. The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg2+ binding first (Kd = 140 +/- 40 microM), are kcat = 105 +/- 2 s(-1) and P-pyr Km = 5 +/- 1 microM. PEP (slow substrate kcat = 2 x 10(-4) s(-1)), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 +/- 0.1 mM, 17 +/- 1 microM, and 210 +/- 10 microM, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (alpha/beta)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.  相似文献   

3.
4.
Structural and functional analyses of alginate lyases are important in the clarification of the biofilm-dependent ecosystem in Pseudomonas aeruginosa and in the development of therapeutic agents for bacterial disease. Most alginate lyases are classified into polysaccharide lyase (PL) family-5 and -7 based on their primary structures. Family PL-7 enzymes are still poorly characterized especially in structural properties. Among family PL-7, a gene coding for a hypothetical protein (PA1167) homologous to Sphingomonas alginate lyase A1-II was found to be present in the P. aeruginosa genome. PA1167 overexpressed in Escherichia coli cleaved glycosidic bonds in alginate and released unsaturated saccharides, indicating that PA1167 is an alginate lyase catalyzing a beta-elimination reaction. The enzyme acted preferably on heteropolymeric regions endolytically and worked most efficiently at pH 8.5 and 40 degrees C. The specific activity of PA1167, however, was much weaker than that of the known alginate lyase AlgL, suggesting that AlgL plays a main role in alginate depolymerization in P. aeruginosa. In addition to this specific activity, differences were found between PA1167 and AlgL in enzyme properties such as molecular mass, optimum pH, salt effect, and substrate specificity. The first crystal structure of the family PL-7 alginate lyase was determined at 2.0 A resolution. PA1167 was found to form a glove-like beta-sandwich composed of 15 beta-strands and 3 alpha-helices. The structural difference between the beta-sandwich PA1167 of family PL-7 and alpha/alpha-barrel AlgL of family PL-5 may be responsible for the enzyme characteristics. Crystal structures of polysaccharide lyases determined so far indicate that they can be assigned to three folding groups having parallel beta-helix, alpha/alpha-barrel, and alpha/alpha-barrel + antiparallel beta-sheet structures as basic frames. PA1167 is the fourth novel folding structure found among polysaccharide lyases.  相似文献   

5.
Kinetic analysis of inactivation of isocitrate lyase from Pseudomonas indigofera by 3-bromopyruvate established that enzyme binds this compound prior to alkylation and that substrate, Ds-isocitrate, competes for the same site on the enzyme. The rate of inactivation was increased by EDTA which is a promoter of catalysis in the presence of activated (reduced) enzyme and substrate. The combination of products, glyoxylate plus succinate, also protected against inactivation. Glyoxylate plus itaconate, phosphoenolpyruvate, or maleate also protected. However, each of the latter three compounds or glyoxylate or succinate alone provided little or no protection. Pyruvate, a competitive inhibitor with respect to glyoxylate in the condensation reaction, also failed to protect. However, two dicarboxylates, meso-tartrate and oxalate, that are also competitive inhibitors with respect to glyoxylate provide some protection against inactivation by BrP perhaps by bridging across cationic sites that facilitate glyoxylate and succinate binding. These and other results imply that alkylation by 3-bromopyruvate occurs at the succinate part of the active site. A mechanism which includes a catalytic role for the cysteine residue at the active site is presented and discussed.  相似文献   

6.
The hotdog fold is one of the basic protein folds widely present in bacteria, archaea and eukaryotes. Many of these proteins exhibit thioesterase activity against fatty acyl-CoAs and play important roles in lipid metabolism, cellular signalling and degradation of xenobiotics. The genome of the opportunistic pathogen Pseudomonas aeruginosa contains over 20 genes encoding predicted hotdog-fold proteins, none of which have been experimentally characterized. We have found that two P. aeruginosa hotdog proteins display high thioesterase activity against 3-hydroxy-3-methylglutaryl-CoA and glutaryl-CoA (PA5202), and octanoyl-CoA (PA2801). Crystal structures of these proteins were solved (at 1.70 and 1.75 ? for PA5202 and PA2801 respectively) and revealed a hotdog fold with a potential catalytic carboxylate residue located on the long α-helix (Asp(57) in PA5202 and Glu(35) in PA2801). Alanine residue replacement mutagenesis of PA5202 identified four residues (Asn(42), Arg(43), Asp(57) and Thr(76)) that are critical for its activity and are located in the active site. A P. aeruginosa PA5202 deletion strain showed an increased secretion of the antimicrobial pigment pyocyanine and an increased expression of genes involved in pyocyanin biosynthesis, suggesting a functional link between PA5202 activity and pyocyanin production. Thus the P. aeruginosa hotdog thioesterases PA5202 and PA2801 have similar structures, but exhibit different substrate preferences and functions.  相似文献   

7.
Isocitrate lyase (ICL) plays a pivotal role in the persistence of Mycobacterium tuberculosis in mice by sustaining intracellular infection in inflammatory macrophages. The enzyme allows net carbon gain by diverting acetyl-CoA from beta-oxidation of fatty acids into the glyoxylate shunt pathway. Given its potential as a drug target against persistent infections, we solved its structure without ligand and in complex with two inhibitors. Covalent modification of an active site residue, Cys 191, by the inhibitor 3-bromopyruvate traps the enzyme in a catalytic conformation with the active site completely inaccessible to solvent. The structure of a C191S mutant of the enzyme with the inhibitor 3-nitropropionate provides further insight into the reaction mechanism.  相似文献   

8.
9.
A search for a potential algC homologue within the Pseudomonas aeruginosa PAO1 genome database has revealed an open reading frame (ORF) of unknown function, ORF540 in contig 54 (July 1999 Pseudomonas genome release), that theoretically coded for a 445-amino-acid-residue polypeptide (I. M. Tavares, J. H. Leit?o, A. M. Fialho, and I. Sá-Correia, Res. Microbiol. 150:105-116, 1999). The product of this gene is here identified as the phosphoglucosamine mutase (GlmM) which catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate, an essential step in the formation of the cell wall precursor UDP-N-acetylglucosamine. The P. aeruginosa gene has been cloned into expression vectors and shown to restore normal peptidoglycan biosynthesis and cell growth of a glmM Escherichia coli mutant strain. The GlmM enzyme from P. aeruginosa has been overproduced to high levels and purified to homogeneity in a six-histidine-tagged form. Beside its phosphoglucosamine mutase activity, the P. aeruginosa enzyme is shown to exhibit phosphomannomutase and phosphoglucomutase activities, which represent about 20 and 2% of its GlmM activity, respectively.  相似文献   

10.
Pseudomonas aeruginosa PAO1 mutants affected in acyclic monoterpenes, n-octanol, and acetate assimilation were isolated using transposon mutagenesis. The isocitrate lyase gene (aceA) corresponding to ORF PA2634 of the PAO1 strain genome was identified in one of these mutants. The aceA gene encodes a protein that is 72% identical to the isocitrate lyase (ICL) characterized from Colwellia maris, but is less than 30% identical to their homologues from pseudomonads. The genetic arrangement of aceA suggests that it is a monocistronic gene, and no adjacent related genes were found. The ICL protein was detected as a 60-kDa band in sodium dodecyl sulfate polyacrylamide gel electrophoresis from cultures grown on acetate, but not in glucose-grown PAO1 cultures. Genetic complementation further confirmed that the aceA gene encodes the ICL enzyme. The ICL enzyme activity in crude extracts from cultures of the PAO1 strain was induced by acetate, citronellol and leucine, and repressed by growth on glucose or citrate. These results suggest that ICL is involved in the assimilation of acetate, acyclic monoterpenes of the citronellol family, alkanols, and leucine, in which the final intermediary acetyl-coenzyme A may be channelled to the glyoxylate shunt.  相似文献   

11.
Enzymatic systems that exploit pericyclic reaction mechanisms are rare. A recent addition to this class is the enzyme PchB, an 11.4-kDa isochorismate pyruvate lyase from Pseudomonas aeruginosa. The apo and pyruvate-bound structures of PchB reveal that the enzyme is a structural homologue of chorismate mutases in the AroQalpha class despite low sequence identity (20%). The enzyme is an intertwined dimer of three helices with connecting loops, and amino acids from each monomer participate in each of two active sites. The apo structure (2.35 A resolution) has one dimer per asymmetric unit with nitrate bound in an open active site. The loop between the first and second helices is disordered, providing a gateway for substrate entry and product exit. The pyruvate-bound structure (1.95 A resolution) has two dimers per asymmetric unit. One has two open active sites like the apo structure, and the other has two closed active sites with the loop between the first and second helices ordered for catalysis. Determining the structure of PchB is part of a larger effort to elucidate protein structures involved in siderophore biosynthesis, as these enzymes are crucial for bacterial iron uptake and virulence and have been identified as antimicrobial drug targets.  相似文献   

12.
The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.  相似文献   

13.
We have recently purified an intracellular carboxylesterase encoded by the open reading frame PA3859 of Pseudomonas aeruginosa. Among proteins showing a significant sequence homology with PA3859 the in vivo function is only known for the human acyl-protein thioesterase I that is involved in the deacylation of Galpha proteins. The crystal structure determination of P. aeruginosa carboxylesterase is expected to provide insights into its physiological role. Therefore, the PA3859 gene was cloned and heterologously expressed in Escherichia coli as N-terminally 6xHis tagged recombinant protein. Here, we present the crystallization, X-ray diffraction analysis and phasing of this enzyme. Two crystal forms were obtained by the hanging drop vapor diffusion method. Crystals of form I belong to the space group P2(1) with cell dimensions of a=65.65, b=50.55, c=142.55 A, beta=92.9 degrees and diffracted, upon flash annealing, up to a resolution of 2.9 A. Two dimers are present in the asymmetric unit. Crystals of form II belong to space group P2(1)2(1)2, with unit cell dimensions of a=96.42, b=96.36, c=68.04 A and diffracted up to 2.1 A resolution. One dimer is present in the asymmetric unit.  相似文献   

14.
Ceramidase (CDase) hydrolyses the N-acyl linkage of the sphingolipid ceramide. We synthesized the non-fluorescent ceramide analogue (4E,2S,3R)-2-N-(10-pyrenedecanoyl)-1,3,17-trihydroxy-17-(3,5-dinitrobenzoyl)-4-heptadecene (10) that becomes fluorescent upon hydrolysis of its N-acyl bond. This novel substrate was used to study several kinetic aspects of the recombinant CDase from the pathogenic bacterium Pseudomonas aeruginosa PA01. Maximum CDase activity was observed above 1.5 microM substrate, with an apparent K(m) of 0.5+/-0.1 microM and a turnover of 5.5 min(-1). CDase activity depends on divalent cations without a strong specificity. CDase is inhibited by sphingosine and by several sphingosine analogues. The lack of inhibition by several mammalian CDase inhibitors such as D-erythro-MAPP, L-erythro-MAPP or N-oleoylethanolamine points to a novel active site and/or substrate binding region. The CDase assay described here offers the opportunity to develop and screen for specific bacterial CDase inhibitors of pharmaceutical interest.  相似文献   

15.
16.
Ceramidase (CDase) hydrolyzes the amide bond in ceramides to yield free fatty acid and sphingosine. From a 3-L Pseudomonas aeruginosa PA01 culture, 70 microg of extracellular alkaline, Ca(2+)-dependent CDase, was purified to homogeneity, the N-terminal sequence was determined, and the CDase gene was cloned. The CDase gene encodes a 670 amino acid protein with a 26 amino acid signal peptide. CDase was expressed in five prokaryotic and eukaryotic expression systems. Small amounts of recombinant active extracellular CDase were expressed by Pseudomonas putida KT2440. In Pichia pastoris GS115 low amounts of recombinant extracellular glycosylated CDase were expressed. High levels of intracellular CDase were expressed by Escherichia coli DH5alpha and E. coli BL21 cells under control of the lac-promoter and T7-promoter, respectively. From a 3-L E. coli DH5alpha culture, 280 microg of pure CDase was obtained after a three-step purification protocol. Under control of the T7-promotor CDase, without its signal peptide, was produced in inclusion bodies in E. coli BL21 cells. After refolding, 1.8 mg of pure active CDase was obtained from a 2.4-L culture after ammonium sulfate precipitation and gel filtration. Both the recombinant and wild-type CDases have a pH optimum of 8.5. The recombinant enzyme was partially characterized. This is the first report of a high yield CDase production system allowing detailed characterization of the enzyme at the molecular level.  相似文献   

17.
Pseudomonas fluorescens is able to grow on R-benzoin as the sole carbon and energy source because it harbours the enzyme benzaldehyde lyase that cleaves the acyloin linkage using thiamine diphosphate (ThDP) as a cofactor. In the reverse reaction, this lyase catalyses the carboligation of two aldehydes with high substrate and stereospecificity. The enzyme structure was determined by X-ray diffraction at 2.6 A resolution. A structure-based comparison with other proteins showed that benzaldehyde lyase belongs to a group of closely related ThDP-dependent enzymes. The ThDP cofactors of these enzymes are fixed at their two ends in separate domains, suspending a comparatively mobile thiazolium ring between them. While the residues binding the two ends of ThDP are well conserved, the lining of the active centre pocket around the thiazolium moiety varies greatly within the group. Accounting for the known reaction chemistry, the natural substrate R-benzoin was modelled unambiguously into the active centre of the reported benzaldehyde lyase. Due to its substrate spectrum and stereospecificity, the enzyme extends the synthetic potential for carboligations appreciably.  相似文献   

18.
Guan R  Ho MC  Almo SC  Schramm VL 《Biochemistry》2011,50(7):1247-1254
The PA3004 gene of Pseudomonas aeruginosa PAO1 was originally annotated as a 5'-methylthioadenosine phosphorylase (MTAP). However, the PA3004 encoded protein uses 5'-methylthioinosine (MTI) as a preferred substrate and represents the only known example of a specific MTI phosphorylase (MTIP). MTIP does not utilize 5'-methylthioadenosine (MTA). Inosine is a weak substrate with a k(cat)/K(m) value 290-fold less than MTI and is the second best substrate identified. The crystal structure of P. aeruginosa MTIP (PaMTIP) in complex with hypoxanthine was determined to 2.8 ? resolution and revealed a 3-fold symmetric homotrimer. The methylthioribose and phosphate binding regions of PaMTIP are similar to MTAPs, and the purine binding region is similar to that of purine nucleoside phosphorylases (PNPs). The catabolism of MTA in P. aeruginosa involves deamination to MTI and phosphorolysis to hypoxanthine (MTA → MTI → hypoxanthine). This pathway also exists in Plasmodium falciparum, where the purine nucleoside phosphorylase (PfPNP) acts on both inosine and MTI. Three tight-binding transition state analogue inhibitors of PaMTIP are identified with dissociation constants in the picomolar range. Inhibitor specificity suggests an early dissociative transition state for PaMTIP. Quorum sensing molecules are associated with MTA metabolism in bacterial pathogens suggesting PaMTIP as a potential therapeutic target.  相似文献   

19.
In order to investigate the catalytic properties of alginate lyase from Pseudomonas aeruginosa CF1/M1, a clinical isolate, regarding the capability to perform β-elimination on oligomannuronates of defined length (2–9), the alginate lyase was purified from periplasmic extracts. A purification method for unsaturated and saturated oligomannuronates applying anionic exchange chromatography on a FPLC apparatus was established. The alginate lyase showed the highest activity, when hexamers were provided as substrate. This indicated that the alginate lyase best accommodates a chain of six alginate residues in the active center. As a minimum chain length, the pentameric oligomannuronate was still accepted as substrate. Mannuronate oligomers shorter than the pentamer were not accepted as substrate for alginate lyase. Furthermore, oligomer pattern analysis of polymannuronate which was subjected to β-elimination by alginate lyase revealed that the trimer is the most abundant oligomer. These data indicated that β-elimination and cleavage occurred at mannuronic acid residue no. 3 of the accommodated hexameric alginate chain.  相似文献   

20.
Genomic islands are foreign DNA blocks inserted in so-called regions of genomic plasticity (RGP). Depending on their gene content, they are classified as pathogenicity, symbiosis, metabolic, fitness or resistance islands, although a detailed functional analysis is often lacking. Here we focused on a 34-kb pathogenicity island of Pseudomonas aeruginosa PA14 (PA14GI-6), which is inserted at RGP5 and carries genes related to those for pyochelin/enantiopyochelin biosynthesis. These enantiomeric siderophores of P. aeruginosa and certain strains of Pseudomonas protegens are assembled by a thiotemplate mechanism from salicylate and two molecules of cysteine. The biochemical function of several proteins encoded by PA14GI-6 was investigated by a series of complementation analyses using mutants affected in potential homologs. We found that PA14_54940 codes for a bifunctional salicylate synthase/salicyl-AMP ligase (for generation and activation of salicylate), that PA14_54930 specifies a dihydroaeruginoic acid (Dha) synthetase (for coupling salicylate with a cysteine-derived thiazoline ring), that PA14_54910 produces a type II thioesterase (for quality control), and that PA14_54880 encodes a serine O-acetyltransferase (for increased cysteine availability). The structure of the PA14GI-6-specified metabolite was determined by mass spectrometry, thin-layer chromatography, and HPLC as (R)-Dha, an iron chelator with antibacterial, antifungal and antitumor activity. The conservation of this genomic island in many clinical and environmental P. aeruginosa isolates of different geographical origin suggests that the ability for Dha production may confer a selective advantage to its host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号