首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The antibacterial properties of macrolide antibiotics (such as erythromycin, tylosin, and narbomycin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as narbomycin) have only single sugar substituents. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the narbomycin producer Streptomyces narbonensis. This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.  相似文献   

3.
Aspartate aminotransferase as well as valine dehydrogenase and threonine dehydratase was required for the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702. The biosynthesis of these enzymes and tylosin production were repressed by high concentrations of ammonium ions. The change in specific tylosin production rates in batch cultures with different initial concentrations of ammonium ions showed patterns similar to those of the specific production rates of aspartate aminotransferase, valine dehydrogenase, and threonine dehydratase. Aspartate aminotransferase has been purified by acetone precipitation, DEAE-cellulose, hydroxyapatite, and preparative electrophoresis chromatographies. The purified enzyme (120 kDa) consisted of two subunits identical in molecular mass (54 kDa) and showed homogeneity, giving one band with a pI of 4.2 upon preparative isoelectric focusing. The enzyme was specific for L-aspartate in the forward reaction; the Km values were determined to be 2.7 mM for L-aspartate, 0.7 mM for 2-oxyglutarate, 12.8 mM for L-glutamate, and 0.15 mM for oxaloacetate. The enzyme was somewhat thermostable, having a maximum activity at 55 degrees C, and had a broad pH optimum that ranged from 5.5 to 8.0. The mode of action was a ping-pong-bi-bi mechanism.  相似文献   

4.
Targeted inactivation of the valine (branched-chain amino acid) dehydrogenase gene (vdh) was used to study the role of valine catabolism in the production of tylosin in Streptomyces fradiae and spiramycin in Streptomyces ambofaciens. The deduced products of the vdh genes, cloned and sequenced from S. fradiae C373.1 and S. ambofaciens ATCC 15154, are approximately 80% identical over all 363 amino acids and 96% identical over a span of the first N-terminal 107 amino acids, respectively, to the deduced product of the Streptomyces coelicolor vdh gene. The organization of the regions flanking the vdh genes is the same in all three species. Inactivation of the genomic copy of the vdh gene in S. fradiae and S. ambofaciens by insertion of a hygromycin resistance (hyg) gene caused loss of the valine dehydrogenase (Vdh) activity, and thus only one enzyme is responsible for the Vdh activity in these organisms. Analysis of the culture broth by bioassay revealed that the vdh::hyg mutants produce an approximately sixfold-lower level of tylosin and an approximately fourfold-lower level of spiramycin than the wild-type S. fradiae and S. ambofaciens strains, while maintaining essentially identical growth in a defined minimal medium with either 25 mM ammonium ion or 0.05% asparagine as the nitrogen source. The addition of the valine catabolite, propionate or isobutyrate, and introduction of the wild-type vdh gene back to each vdh::hyg mutant reversed the negative effect of the vdh::hyg mutation on spiramycin and tylosin production. These data show that the catabolism of valine is a major source of fatty acid precursors for macrolide biosynthesis under defined growth conditions and imply that amino acid catabolism is a vital source of certain antibiotic precursors in actinomycetes.  相似文献   

5.
Pikromycin-related macrolides have recently attracted significant research interest because they are structurally related to the semisynthetic ketolide antibiotics that have demonstrated promising potential in combating multi-drug-resistant respiratory pathogens. Cloning and in-depth studies of the pikromycin biosynthetic gene cluster from Streptomyces venezuelae have led to new avenues in modular polyketide synthases, deoxysugar biosynthesis, cytochrome P450 hydroxylase, secondary metabolite gene regulation, and antibiotic resistance. Moreover, the knowledge and tools used for these studies are proving to be valuable in the development of advanced technologies for combinatorial biosynthesis of new macrolide antibiotics. This review summarizes these new developments and introduces S. venezuelae as a powerful new system for secondary metabolite pathway engineering from bench-top genetic manipulation to product fermentation.  相似文献   

6.
Adenosine 3':5' cyclic monophosphate seems to regulate antibiotic biosynthesis and secondary metabolism in tylosin-producing cultures of Streptomyces fradiae C373.1. A dose-dependent response is observed by exogenous additions of dibutyryl cyclic AMP (cAMP), and is related to the nutritional status of the culture. Addition of cAMP to cultures growing in nutritionally lean media caused higher cumulative antibiotic tigers and some cellular differentiation compared with the control. In nutritionally rich media, a qualitatively different behavior resulted: an almost instantaneous shift toward secondary metabolism occurred. The response is characterized by extensive cellular differentiation with little growth and only a trace of antibiotic production. The possible role of cyclic AMP n the regulation of tylosin biosynthesis and secondary metabolism and its relation to specific nutrient limitations in synthetic, defined media in Streptomyces fradiae is discussed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
A series of novel 9-O-arylalkyloxime analogs based on three different 16-membered macrolide scaffolds-5-O-mycaminosyltylonolide (OMT), tilmicosin, and 20-deoxy-20-(3,5-dimethyl-1-piperidin-1-yl)-OMT-was synthesized. In vitro antibiotic activities were assayed against Gram-positive Streptococcus pneumoniae and Staphylococcus aureus and Gram-negative Haemophilus influenzae bacterial strains. Analogs derived from OMT (3-15) showed similar or better antibacterial activities against macrolide-susceptible strains and enhanced activities against macrolide-resistant strains compared with erythromycin A, tylosin, or OMT. Similar results were observed for tilmicosin 9-O-arylalkyloxime analogs (18-24). In contrast, most of the 20-deoxy-20-(3,5-dimethyl-1-piperidin-1-yl)-OMT analogs (25-33) showed reduced antibacterial activities compared with OMT. Ribosome-binding studies were performed on compounds 12 (OMT derivative), 20 (tilmicosin derivative), and 29 [20-deoxy-20-(3,5-dimethyl-1-piperidin-1-yl)-OMT derivative]. It was found that these compounds interacted with both domain V and domain II of the Escherichia coli 23S rRNA.  相似文献   

8.
To elucidate the repression mechanism of ammonium ions on the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702, enzyme activities involved in the metabolism of the aspartate family of amino acids were evaluated in relation to the ammonium ion concentration and tylosin production. It was found that aspartate aminotransferase was essential for both cell growth and tylosin production. However, both threonine dehydratase and valine dehydrogenase were repressed by supplemented ammonium ions at concentrations higher than 50 mM. Threonine dehydratase was purified from cell-free extracts by acetone precipitation, ion-exchange chromatography and gel filtration, and its molecular mass was estimated to be 67,200 Da. The optimum pH and temperature for threonine dehydratase activity were 7.5 and 25 degrees C, respectively, and the Km value for threonine under these optimum conditions was 21 mM. The inhibition pattern of ammonium ions on the activity of threonine dehydratase appeared to be a mixed type.  相似文献   

9.
Abstract In Streptomyces fradiae l -threonine is catabolized by threonine dehydratase or threonine aldolase to 2-ketobutyrate or acetaldehyde and glycine, respectively. Threonine dehydratase synthesis is repressed and its activity is inhibited by NH4+ ions. Threonine aldolase is not repressed by NH4+ ions and its activity is slightly stimulated by these ions. The addition of threonine to the medium increased pronouncedly the fraction of non-branched fatty acids with an even carbon number under conditions when threonine dehydratase was repressed and inhibited. The results indicate that threonine serves as a source of propionyl-CoA and 2-methylbutyryl-CoA and also of acetyl-CoA required for tylosin and fatty acid biosynthesis.  相似文献   

10.
Journal of Industrial Microbiology & Biotechnology - Macrolides, especially 14-membered macrolides, are a valuable group of antibiotics that originate from various microorganisms. In addition...  相似文献   

11.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   

12.
13.
The veterinary antibiotic tildipirosin (20,23-dipiperidinyl-mycaminosyl-tylonolide, Zuprevo) was developed recently to treat bovine and swine respiratory tract infections caused by bacterial pathogens such as Pasteurella multocida. Tildipirosin is a derivative of the naturally occurring compound tylosin. Here, we define drug-target interactions by combining chemical footprinting with structure modeling and show that tildipirosin, tylosin, and an earlier tylosin derivative, tilmicosin (20-dimethylpiperidinyl-mycaminosyl-tylonolide, Micotil), bind to the same macrolide site within the large subunit of P. multocida and Escherichia coli ribosomes. The drugs nevertheless differ in how they occupy this site. Interactions of the two piperidine components, which are unique to tildipirosin, distinguish this drug from tylosin and tilmicosin. The 23-piperidine of tildipirosin contacts ribosomal residues on the tunnel wall while its 20-piperidine is oriented into the tunnel lumen and is positioned to interfere with the growing nascent peptide.  相似文献   

14.
Amplified DNA in Streptomyces fradiae.   总被引:19,自引:12,他引:7       下载免费PDF全文
A spontaneous mutant of Streptomyces fradiae contained an amplifiable unit of DNA with a sequence length of approximately 10.5 kilobases that was amplified to approximately 500 copies per chromosome. The amplified DNA appears to be cryptic. SalI fragments of the amplified DNA were cloned into Escherichia coli to construct a restriction map and characterize the amplified DNA. The amplified DNA contained tandem repeats of the amplifiable unit of DNA. The unit had an average base composition of 71% guanine plus cytosine, similar to the chromosomal DNA of Streptomyces species. At least a portion of the amplifiable unit of DNA was present at a low copy number in the wild-type strain. The phenotype of amplified DNA was designated Ads1SF for amplified DNA sequence 1 in S. fradiae.  相似文献   

15.
The tylosin-biosynthetic genes of Streptomyces fradiae   总被引:3,自引:0,他引:3  
The tylosin-biosynthetic (tyl) gene cluster occupies about 1% of the genome of Streptomyces fradiae and includes at least 43 open reading frames. In addition to structural genes required for tylosin production, the tylcluster contains three resistance determinants and several regulatory genes. Tylosin production is evidently controlled by pathway-specific and pleiotropic regulators with the likely involvement of -butyrolactone signalling factors. Accumulation of the polyketide aglycone is controlled by glycosylated macrolides and optimal performance of the complex polyketide synthase enzyme requires the activity of an editing thioesterase.  相似文献   

16.
Two novel depsipeptides (12) were isolated from Streptomyces sp. ML55 together with two known analogues (34). Their structures were elucidated using a combination of NMR experiments, as well as detailed MS/MS experiments. The biosynthetic pathway of isolated compounds was dissected by genome sequencing data analysis for a hybrid nonribosomal peptide synthetase (NRPS) and polyketide synthetase (PKS) assembly line.  相似文献   

17.
Decomposition of native keratin by Streptomyces fradiae   总被引:15,自引:3,他引:12       下载免费PDF全文
  相似文献   

18.
Streptomyces fradiae IFO 3439 elaborated enzymes with macerating activity toward various plant tissues. The optimum pH of the macerating activity was about 8.0 when the crude enzyme preparation acted on disks of potato tuber or pieces of Ganpi (Wikstroemia sikokiana Fr. et Sav.) bark. Pectolytic activities in this preparation toward free pectin or poly-galacturonic acid were considerably lower than those of fungi or bacteria. However, when the crude enzyme preparation acted on native pectin in Ganpi bark, about 90 per cent of the galacturonic acid residues were recovered as the polygalacturonides having a still high degree of polymerization. These results suggested that the crude enzyme of S. fradiae solubilized Ganpi pectin, degrading it to only a very small extent.  相似文献   

19.
Epithelial cells and some of their transformed derivatives require ethanolamine to grow normally in defined culture medium. When these cells are cultured without ethanolamine, the amount of cellular phosphatidylethanolamine is considerably reduced. Using a set of rat mammary carcinoma cell lines whose growth is responsive (64-24 cells) and not responsive (22-1 cells) to ethanolamine, the biochemical mechanism of ethanolamine responsiveness was investigated. The biosynthesis and metabolism of phospholipid, particularly of those involving phosphatidylethanolamine, were thus compared between the two types of cells. The incorporation of [3H]serine into phosphatidylserine and phosphatidylethanolamine in 64-24 cells was 60 and 37%, respectively, of those in 22-1 cells. However, the activity of phosphatidylserine decarboxylase was virtually the same in these cell lines. When these cells were cultured in the presence of [32P]phosphatidylcholine and [32P]phosphatidylethanolamine, the rate of accumulation of 32P-labeled phosphatidylserine from the radioactive phosphatidylethanolamine was considerably reduced in 64-24 cells compared to that in 22-1 cells, although the rate of synthesis of phosphatidylserine and phosphatidylethanolamine from the radioactive phosphatidylcholine was similar between the two cell lines. The rate of labeling phosphatidylcholine from the radioactive phosphatidylethanolamine was also reduced in 64-24 cells, although the difference was not as great as that of phosphatidylserine. Incorporation of 32P into phosphatidylethanolamine was correlated with the concentration of ethanolamine in the culture medium in 64-24 cells, whereas in 22-1 cells the incorporation was not influenced by ethanolamine. Enzyme activities of the CDP-ethanolamine pathway were not significantly different between the two cell lines. The rate of degradation of phosphatidylethanolamine was also similar in these cell lines. These results show that ethanolamine responsiveness of 64-24 cells, and probably other epithelial cells, is due to a limited ability to synthesize phosphatidylserine resulting from a limited base-exchange activity utilizing phosphatidylethanolamine.  相似文献   

20.
Streptomyces fradiaewas immobilized in polyacrylamide gel prepared from 5% total acrylamide (90% acrylamide and 10%N,N′-methylenebisacrylamide). Production of protease by the immobilized mycelia was attempted in a batch system. A dilute medium containing 0.5% starch, 0.5% meat extract, and 0.05% yeast extract was employed. The reusability of the immobilized and washed mycelia was examined. The activity of protease production by washed mycelia was rapidly decreased with increasing use cycles. The activity of the immobilized mycelia increased gradually, and reached a maximum after ten use cycles. Then, the activity gradually decreased with increasing reaction cycles. This might be caused by destruction of the gels. On the other hand, the sterilization of the surface of the immobilized mycelia was effective for elongation of the lifetime. As a result, the half-life of protease production by the sterilized immobilized mycelia was about 30 days. The rate of protease production by immobilized mycelia was 12,000 U/ml/hr. This value was four times higher than that by submerged culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号