共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
Functional and association studies of the cholesteryl ester transfer protein (CETP) gene in a Wannan Black pig model 下载免费PDF全文
M. Q. Zhang K. Fu W. P. Chen C. Ding X. L. He X. D. Zhang L. Huang Z. J. Yin 《Animal genetics》2015,46(6):702-706
Some polymorphisms of the human CETP gene are causally and significantly associated with serum lipids levels; however, the information regarding this gene in pigs is sparse. To evaluate the effects of CETP on blood lipid traits and fat deposition in pig, porcine CETP tissue expression patterns were observed by quantitative real‐time polymerase chain reaction (qPCR) first. High expression was detected in liver, spleen, gluteus medius (GM) muscle and backfat. A de novo polymorphism (AF333037:g.795C>T) in the intron 1 region of porcine CETP was identified. This polymorphism was further genotyped by direct sequencing of the PCR products of 390 Wannan Black pigs, a Chinese native breed population. Association analyses at 45 and 300 days of age revealed highly significant associations between CETP genotypes and serum lipid traits. Furthermore, this polymorphism was proved to be associated with differences in liver CETP mRNA levels: pigs at 300 days of age with the TT genotype had higher levels than did those with other genotypes (P = 0.021). Additionally, analysis at 300 days of age showed that GM CETP mRNA expression correlated positively with serum lipids levels as well as with carcass backfat thickness and intramuscular fat content in GM. These results indicate that CETP is involved in serum, adipose and muscle lipid metabolism in pigs. The mechanisms underlying such relationships and their functional implications are worthy of further research. 相似文献
3.
Cholesteryl ester transfer protein (CETP) has at least one unpaired sulfhydryl residue, which we have shown previously to be in or near the active site region. We investigated the location of this unpaired cysteine residue(s) of CETP using chemical modification with fluorescent sulfhydryl-specific reagents, limited proteolysis, and amino acid/sequence analysis. The kinetics of labeling CETP by either 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS) or acrylodan were followed by observing the increase in fluorescence of the bound probes. Labeling was inhibited strongly by preincubation of the CETP with either PNU-617, a competitive inhibitor of cholesteryl ester (CE) transport, and TP2 antibody. In addition, the transfer activities of the substrate CE by the modified CETP's were also inhibited but not competitively. Finally, preincubation of the native protein with N-ethylmaleimide (NEM) resulted in inhibition of activity that was dependent upon the time of exposure of the protein to the alkylating agent. These results provide further evidence that there is a cysteine residue in the active site region of CETP and ligands that either react or bind to this residue produce steric hindrance to CE transfer activity. Finally, although not conclusive, results of the protein chemistry experiments with the modified CETP suggest that the cysteine residue at position 333 is unpaired. 相似文献
4.
5.
Thomas A. Rano Ellen Sieber-McMaster Patricia D. Pelton Maria Yang Keith T. Demarest Gee-Hong Kuo 《Bioorganic & medicinal chemistry letters》2009,19(9):2456-2460
Tetrahydroquinoline A is a potent inhibitor of the cholesterol ester transfer protein (CETP), a target for the treatment of low HDL-C and atherosclerosis. Low HDL-C has been identified as a key risk factor for cardiovascular disease in addition to high LDL-C, the target of the statin drugs. Tetrahydroquinoline A inhibits partially purified CETP with an IC50 of 39 nM. The preparation of a series of potent inhibitors of CETP designed around a 1,2,3,4-tetrahydroquinoline platform will be discussed. 相似文献
6.
Gautier T Masson D Jong MC Duverneuil L Le Guern N Deckert V Pais de Barros JP Dumont L Bataille A Zak Z Jiang XC Tall AR Havekes LM Lagrost L 《The Journal of biological chemistry》2002,277(35):31354-31363
Transgenic mice expressing human cholesteryl ester transfer protein (HuCETPTg mice) were crossed with apolipoprotein CI-knocked out (apoCI-KO) mice. Although total cholesterol levels tended to be reduced as the result of CETP expression in HuCETPTg heterozygotes compared with C57BL6 control mice (-13%, not significant), a more pronounced decrease (-28%, p < 0.05) was observed when human CETP was expressed in an apoCI-deficient background (HuCETPTg/apoCI-KO mice). Gel permeation chromatography analysis revealed a significant, 6.1-fold rise (p < 0.05) in the cholesteryl ester content of very low density lipoproteins in HuCETPTg/apoCI-KO mice compared with control mice, whereas the 2.7-fold increase in HuCETPTg mice did not reach the significance level in these experiments. Approximately 50% decreases in the cholesteryl ester content and cholesteryl ester to triglyceride ratio of high density lipoproteins (HDL) were observed in HuCETPTg/apoCI-KO mice compared with controls (p < 0.05 in both cases), with intermediate -20% changes in HuCETPTg mice. The cholesteryl ester depletion of HDL was accompanied with a significant reduction in their mean apparent diameter (8.68 +/- 0.04 nm in HuCETPTg/apoCI-KO mice versus 8.83 +/- 0.02 nm in control mice; p < 0.05), again with intermediate values in HuCETPTg mice (8.77 +/- 0.04 nm). In vitro purified apoCI was able to inhibit cholesteryl ester exchange when added to either total plasma or reconstituted HDL-free mixtures, and coincidently, the specific activity of CETP was significantly increased in the apoCI-deficient state (173 +/- 75 pmol/microg/h in HuCETPTg/apoCI-KO mice versus 72 +/- 19 pmol/microg/h in HuCETPTg, p < 0.05). Finally, HDL from apoCI-KO mice were shown to interact more readily with purified CETP than control HDL that differ only by their apoCI content. Overall, the present observations provide direct support for a potent specific inhibition of CETP by plasma apoCI in vivo. 相似文献
7.
Cho KH Shin YW Choi MS Bok SH Jang SH Park YB 《Journal of biochemistry and molecular biology》2002,35(2):172-177
We previously reported that cholesteryl ester transfer protein (CETP) inhibitory peptides (designated P28 and P10) have anti-atherogenic effects in hypercholesterolemic rabbits (Biochim. Biophys. Acta (1998) 1391, 133-144). To further investigate those effects, we studied rabbit plasma that was collected after 30 h of a P28 or P10 injection. We found that there is a strong correlation between the in vivo CETP inhibition effects and alterations of lipoprotein particle size distribution in rabbit plasma, as determined on an agarose gel electrophoresis and gel filtration column chromatography. In vivo effects of the peptide were observed again in C57BL/6 mice that expressed simian CETP. The P28 or P10 peptide (7 microg/g of body weight) that was dissolved in saline was injected subcutaneously into the mice. The P28 injection caused the partial inhibition of plasma CETP activity up to 50%, decreasing the total plasma cholesterol concentration by 30%, and increasing the ratio of HDL/ total-cholesterol concentration by 150% in the CETPtransgenic (tg) mice. The CETP inhibition by the P28 or P10 made alterations that modulated the size re-distribution of the lipoproteins in the blood stream. Particle size of the very low (VLDL) and low density lipoproteins (LDL) from the peptide-injected group was highly decreased compared to the saline-injected group (determined on the gel filtration column chromatography). In contrast, The HDL particle size of the P28-injected group increased compared to the control group (saline-injected). The expression level of the CETP mRNA of the P28-injected CETP-tg mouse appeared lower than the saline-injected CETP-tg mouse. These results suggest that the injection of the CETP inhibitory peptide could affect the CETP expression level in the liver by influencing lipoprotein metabolism. 相似文献
8.
High plasma triacylglycerol and low high-density lipoprotein levels are risk factors for cardiovascular disease in diabetes. Plasma high-density lipoprotein levels are regulated by cholesterol ester transfer protein (CETP). The regulation of CETP under diabetic conditions is not clear, and this is due to a lack of appropriate models. We used transgenic mice expressing human CETP to study the regulation of this protein under type-1 diabetic conditions and further investigated whether insulin reverses the effect of diabetes. Mice expressing human CETP under the control of its natural flanking region and age-matched littermates not expressing this protein were made diabetic by injecting streptozotocin, and the reversal of diabetes was assessed by injecting insulin. The plasma total cholesterol, low-density lipoprotein-cholesterol, and triacylglycerol concentrations were elevated, whereas high-density lipoprotein-cholesterol concentrations were reduced after the onset of diabetes. Insulin injection partially recovered this effect. The plasma cholesterol ester transfer activity, CETP mass, and hepatic CETP mRNA abundance were significantly higher in diabetic mice that were partially restored by insulin administration. There was a strong correlation between high-density lipoprotein-cholesterol concentrations and cholesterol ester transfer activity. These results suggest that an increase in CETP under diabetic conditions might be a major factor responsible for increased incidence of diabetes-induced atherosclerosis. 相似文献
9.
《Bioorganic & medicinal chemistry letters》2014,24(3):860-864
A series of diphenylpyridylethanamine-based inhibitors of cholesteryl ester transfer protein with aminoheterocycles appended onto the N-terminus of the chemotype were explored as urea mimetics. Potent compounds were discovered and were further optimized to improve metabolic stability and PXR transactivation profile. 相似文献
10.
Gaofu Q Rongyue C Dan M Xiuyun Z Xuejun W Jie W Jingjing L 《Protein and peptide letters》2006,13(2):149-154
The recombinant chimeric enzyme, AnsB-TTP-CETPC, comprising asparaginase, tetanus toxin helper T cell epitope and human CETP B cell epitope was expressed as a soluble protein in Escherichia coli. The purified chimeric enzyme exhibited approximate 83% activity of the native asparaginase. After immunization with three doses of chimeric enzyme, high titers of anti-CETP antibodies were induced and lasted more than eighteen weeks in mice, and could even be detected at a dilution of 1:12800 by normal ELISA assay. The specificity of anti-CETP antibody was verified by Western blot assay. After displaying on the surface of asparaginase, the weak antigenicity of CETP epitope was effectively overcome, there after a strong CETP-specific immune response was evoked in mice immunized with the chimeric enzyme. Histochemical analysis of mice kidney tissue showed that immunization with the chimeric enzyme did not cause any pathological changes in mice. Collectively, the chimeric enzyme may be further developed as a vaccine against atherosclerosis in the future. 相似文献
11.
Vaccination against cholesteryl ester transfer protein (CETP) is proven to be effective for inhibiting atherosclerosis in animal models. In this study, the proteases-resistant intestinal trefoil factor (TFF3) was used as a molecular vehicle to construct chimeric TFF3 (cTFF3) containing CETP B cell epitope and tetanus toxin helper T cell epitope. It was found that cTFF3 still preserved a trefoil structure, and can resist proteases digestion in vitro. After oral immunization with cTFF3, the CETP-specific IgA and IgG could be found in intestine lavage fluid and serum, and the anti-CETP antibodies could inhibit partial CETP activity to increase high-density lipoprotein cholesterol, decrease low-density lipoprotein cholesterol, and inhibit atherosclerosis in animals. Therefore, TFF3 is a potential molecular vehicle for developing oral peptide vaccines. Our research highlights a novel strategy for developing oral peptide vaccines in the future. 相似文献
12.
Sk. Abdul Amin Nilanjan Adhikari Shovanlal Gayen 《Journal of biomolecular structure & dynamics》2013,31(17):4528-4541
AbstractThe drug design and discovery of lipid modulators is very demanding as no new molecule has entered into the market in the last 35 years. Cholesteryl ester transfer protein (CETP) is a promising target as lipid modulators. Inhibition of the CETP enzyme reduces the risk of cardiovascular events. The first CETP inhibitor torcetrapib and related drug candidates failed in the clinical trial due to the off-target effects leading to high toxicity. Thus, newer CETP inhibitors have now paramount importance to accelerate the drug discovery efforts in the field of cardiovascular disease (CVD). In the present study, 140 benzoxazole compounds were studied by using different chemometric techniques, for example, pharmacophore mapping, molecular docking, three-dimensional quantitative structure–activity relationship comparative molecular field analysis (3D-QSAR CoMFA), topomer CoMFA and Bayesian classification, in order to generate complete and reliable information regarding the structural requirements for the CETP inhibition. The best pharmacophore hypothesis was statistically significant (regression coefficient of 0.957 and a lower root mean square of 0.890). Molecular docking study revealed that cyano-substituted compounds form hydrogen bond with targeted macromolecule. The 3D-QSAR CoMFA model also produced a leave-one-out (LOO) cross-validated Q2 of 0.527, an R2 of 0.853 and an R2Pred of 0.603. Similarly, two topomer CoMFA models were also statistically significant and reliable in terms of their Q2, R2 and R2Pred values. The Bayesian classification study also provided the excellent ROC values of 0.919 and 0.939 for training and test sets, respectively. Overall, this study may help in the rational design of newer benzoxazole type compounds with higher CETP inhibition.Communicated by Ramaswamy H. Sarma 相似文献
13.
14.
15.
A model system to study the putative role of cholesteryl ester transfer protein in the egress of interstitial cholesteryl ester is described. Confluent cultures of bovine aortic smooth muscle cells were labeled for 24 h with [3H]cholesteryl linoleyl ether and [14C]cholesteryl linoleate by incubation with bovine milk lipoprotein lipase. This method of labeling results in the transfer of cholesteryl linoleyl ether and cholesteryl ester to three compartments: a trypsin-releasable, trypsin-resistant and catabolic compartment (Stein, O., Halperin, G., Leitersdorf, E., Olivecrona, T. and Stein, Y. (1984) Biochim. Biophys. Acta 795, 47-59). The efflux of labeled cholesteryl linoleyl ether and cholesteryl ester from the extracellular and cell-surface related compartments into a serum-free culture medium containing 1% bovine serum albumin was studied during 24 h of postincubation. The efflux was expressed as a percentage of pulse value, i.e., radioactivity retained by the cell culture at the end of the labeling period. The efflux of [3H]cholesteryl linoleyl ether, [14C]cholesteryl ester and 14C-labeled free cholesterol (formed by cellular hydrolysis of cholesterol ester) into the culture medium with 1% bovine serum albumin was about 5% of the pulse value. Addition of human lipoprotein-deficient serum resulted in a 3-10-fold increase in the efflux of [3H]cholesteryl linoleyl ether and [14C]cholesteryl ester, but did not change markedly the efflux of 14C-labeled free cholesterol. Rat lipoprotein-deficient serum which does not contain cholesteryl ester transfer protein did not increase the efflux of [3H]cholesteryl linoleyl ether or [14C]cholesteryl ester. The rate of cholesteryl ester efflux in the presence of human lipoprotein-deficient serum was linear for about 6 h and increased further up to 24 h. Addition of Intralipid to medium containing human lipoprotein-deficient serum further enhanced the efflux of [3H]cholesteryl linoleyl ether and, to a lesser extent, that of cholesteryl ester. A similar effect was observed also by addition of rat VLDL to medium containing human lipoprotein-deficient serum. Inhibition of cholesteryl linoleyl ether and cholesteryl ester efflux and marked enhancement of free cholesterol efflux occurred when rat HDL was added to medium containing human lipoprotein-deficient serum, while human HDL was only slightly inhibitory. The results obtained with human lipoprotein-deficient serum were reproduced with partially purified cholesteryl ester transfer protein. Using the partially purified cholesteryl ester transfer protein, the efflux of cholesteryl linoleate was compared to that of cholesteryl oleate and was found to be the same. 相似文献
16.
Regulated vectorial secretion of cholesteryl ester transfer protein (LTP-I) by the CaCo-2 model of human enterocyte epithelium 总被引:4,自引:0,他引:4
We have investigated the human CaCo-2 enterocyte model for secretion of the plasma cholesteryl ester transfer protein, LTP-I. CaCo-2 cells secrete a cholesteryl ester transfer protein which possesses molecular identity with plasma LTP-I, demonstrated by anti-LTP-I immunoblot analysis and immunoinhibition of all cell-secreted cholesteryl ester transfer activity. When CaCo-2 are cultured on permeable membranes, cholesteryl ester transfer activity is detected only in the lower culture compartment. Thus, CaCo-2 vectorially sort and secrete LTP-I, as well as the intestinal apolipoproteins, from the basolateral cellular domain. Over a 24-h period, CaCo-2 secrete cholesteryl ester transfer activity in a time-dependent manner, at approximately twice the rate of HepG2. Furthermore, CaCo-2 enterocytes, but not HepG2 hepatocytes, regulate LTP-I secretion in response to fatty acid concentration in the culture medium. Based on these observations, we speculate that the intestine may be the principal regulated source of human plasma LTP-I. 相似文献
17.
The putative role of cholesteryl ester transfer protein (CETP) in the removal of cholesteryl ester from hepatic reticuloendothelial cells in vivo was studied in hamsters. The parameter tested was retention of [3H]cholesteryl linoleyl ether ([3H]CLE), a nonhydrolysable analog of cholesteryl ester, in the liver after injection of [3H]CLE labeled acetylated LDL, which is targetted to nonparenchymatous littoral cells. In hamsters fed laboratory chow, plasma cholesteryl ester transfer activity (CETA) was 10.6 +/- 0.9 units and the retention of [3H]CLE in the liver 28 days after injection was 86% of the 4 h value. It was about 55% in rats fed the same diet, in which CETA was not detectable. When the diet was supplemented with 2% cholesterol and 15% margarine, CETA activity in hamsters increased 2-fold, yet no change in retention of [3H]CLE in liver was seen after 28 days. In rats, the retention of [3H]CLE in the liver was also not changed by the dietary fat supplementation. These results do not support the role of CETP in vivo in removal of cholesteryl ester from intact reticuloendothelial cells. 相似文献
18.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism. 相似文献
19.
Cholesteryl ester transfer protein (CETP) is a hydrophobic plasma glycoprotein that mediates the transfer and exchange of cholesteryl ester (CE) and triglyceride (TG) between plasma lipoproteins, and also plays an important role in HDL metabolism. Previous studies have indicated that, compared to wild type mice, human CETP transgenic mice had significantly lower plasma HDL CE levels, which was associated with enhancement of HDL CE uptake by the liver. However, the mechanism of this process is still unknown. To evaluate the possibility that this might be directly mediated by CETP, we utilized CETP transgenic (CETPTg) mice with liver scavenger receptor BI (SR-BI) deficiency [i.e., PDZK1 gene knockout (PDZK1O)], and with receptor associated protein (RAP) overexpression, to block LDL receptor-related protein (LRP) and LDL receptor (LDLR). We found that (1) CETPTg/PDZK1O mice have significantly lower HDL-C than that of PDZK1 KO mice (36%, p<0.01); (2) CETPTg and CETPTg/PDZK1O mice have same HDL-C levels; (3) CETPTg/PDZK1O/RAP mice had significant lower plasma HDL-C levels than that of PDZK1O/RAP ones (50%, p<0.001); (4) there is no incremental transfer of HDL CE radioactivity to the apoB-containing lipoprotein fraction in mice expressing CETP; and (5) CETPTg/PDZK1O/RAP mice had significant higher plasma and liver [(3)H]CEt-HDL turnover rates than that of PDZK1O/RAP ones (50% and 53%, p<0.01, respectively). These results suggest that CETP expression in mouse increases direct removal of HDL CE in the liver and this process is independent of SR-BI, LRP, and possibly LDLR. 相似文献
20.
Thomas A. Bell III Mark J. Graham Richard G. Lee Adam E. Mullick Wuxia Fu Dan Norris Rosanne M. Crooke 《Journal of lipid research》2013,54(10):2647-2657
Due to their ability to promote positive effects across all of the lipoprotein classes, cholesteryl ester transfer protein (CETP) inhibitors are currently being developed as therapeutic agents for cardiovascular disease. In these studies, we compared an antisense oligonucleotide (ASO) inhibitor of CETP to the CETP small molecule inhibitor anacetrapib. In hyperlipidemic CETP transgenic (tg) mice, both drugs provided comparable reductions in total plasma cholesterol, decreases in CETP activity, and increases in HDL cholesterol. However, only mice treated with the antisense inhibitor showed an enhanced effect on macrophage reverse cholesterol transport, presumably due to differences in HDL apolipoprotein composition and decreases in plasma triglyceride. Additionally, the ASO-mediated reductions in CETP mRNA were associated with less accumulation of aortic cholesterol. These preliminary findings suggest that CETP ASOs may represent an alternative means to inhibit that target and to support their continued development as a treatment for cardiovascular disease in man. 相似文献