首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of undifferentiated cardiogenic mesoderm to generate diversified myogenic phenotypes was assayed in a minimal culture system. During cardiogenesis in vivo, the anterior and posterior segments of the avian heart have distinct patterns of contractile protein gene expression when they first differentiate. To assess the potential of undifferentiated cardiogenic tissue to diversify into distinct anterior and posterior lineages prior to heart formation, cardiogenic mesoderm and endoderm were removed together from the embryo at Hamburger and Hamilton stages 4-8. Explants from each of these stages differentiated in defined medium as indicated by the expression of muscle-specific genes. However, the ability to express the atrial-specific myosin heavy chain (AMHC1) mRNA was confined to posterior cardiac progenitors. Diversification was not dependent on anterior endoderm, suggesting that inductive interactions between the mesoderm and endoderm are not necessary to maintain diversified cardiac lineages after stage 4. The diversified potential of explanted cardiogenic tissue was altered with retinoic acid treatment, resulting in the activation of AMHC1 gene expression in the anterior progenitors. Anterior cardiogenic cells removed from the embryo at stage 8, when the heart begins to differentiate in vivo, are not susceptible to the alteration of diversified phenotype by retinoic acid treatment. Therefore, the potential to form distinct cardiomyogenic cell lineages is present in the anterior lateral plate mesoderm soon after gastrulation and the maturation of these lineages in a positionally dependent manner is maintained in a simple defined culture system in vitro.  相似文献   

2.
Regulation of avian cardiogenesis by Fgf8 signaling   总被引:10,自引:0,他引:10  
The avian heart develops from paired primordia located in the anterior lateral mesoderm of the early embryo. Previous studies have found that the endoderm adjacent to the cardiac primordia plays an important role in heart specification. The current study provides evidence that fibroblast growth factor (Fgf) signaling contributes to the heart-inducing properties of the endoderm. Fgf8 is expressed in the endoderm adjacent to the precardiac mesoderm. Removal of endoderm results in a rapid downregulation of a subset of cardiac markers, including Nkx2.5 and Mef2c. Expression of these markers can be rescued by supplying exogenous Fgf8. In addition, application of ectopic Fgf8 results in ectopic expression of cardiac markers. Expression of cardiac markers is expanded only in regions where bone morphogenetic protein (Bmp) signaling is also present, suggesting that cardiogenesis occurs in regions exposed to both Fgf and Bmp signaling. Finally, evidence is presented that Fgf8 expression is regulated by particular levels of Bmp signaling. Application of low concentrations of Bmp2 results in ectopic expression of Fgf8, while application of higher concentrations of Bmp2 result in repression of Fgf8 expression. Together, these data indicate that Fgf signaling cooperates with Bmp signaling to regulate early cardiogenesis.  相似文献   

3.
In the forming vertebrate heart, bone morphogenetic protein signaling induces expression of the early cardiac regulatory gene nkx-2.5. A similar regulatory interaction has been defined in Drosophila embryos where Dpp signaling mediated by the Smad homologues Mad and Medea directly regulates early cardiac expression of tinman. A conserved cluster of Smad consensus binding sequences was identified in early cardiac regulatory sequences of the mouse nkx-2.5 gene. The importance of the nkx-2.5 Smad consensus region in early cardiac gene expression was examined in transgenic mice and in cultured mouse embryos. In transgenic mice, deletion of the Smad consensus region delays induction of embryonic DeltaSmadnkx-2.5/lacZ gene expression during early heart formation. Induction of DeltaSmadnkx-2.5/lacZ expression is also delayed in the outflow tract myocardium and visceral mesoderm. Targeted mutation of the three Smad consensus sequences inhibited nkx-2.5/lacZ expression in the cardiac crescent, demonstrating a specific requirement for the Smad consensus sites in early cardiac gene induction. Cultured DeltaSmadnkx-2.5/lacZ transgenic mouse embryos also exhibit delayed induction of transgene expression. In the four-chambered heart, deletion of the Smad consensus region resulted in expanded DeltaSmadnkx-2.5/lacZ transgene expression. Thus, the nkx-2.5 Smad consensus region can have positive or negative regulatory function, depending on the developmental context and cellular environment.  相似文献   

4.
The vertebrate liver and heart arise from adjacent cell layers in the anterior lateral (AL) endoderm and mesoderm of late gastrula embryos, and the earliest stages of liver and heart development are interrelated through reciprocal tissue interactions. Although classical embryological studies performed several decades ago in chick and quail defined the timing of hepatogenic induction in birds and the important role for cardiogenic mesoderm in this process, almost nothing is known about the molecular aspects of avian liver development. Here we use in vivo and explantation assays to investigate tissue interactions and signaling pathways regulating Hex, a homeobox gene required for liver development, and the earliest stages of hepatogenesis in the chick embryo. We find that explants of late gastrula anterior lateral endoderm plus mesoderm, which have been used extensively for studies relating to heart development, also produce albumin-expressing hepatoblasts. Expression of Hex, the earliest known molecular marker for the hepatogenic endoderm, and albumin, indicative of early committed hepatoblasts, requires both autocrine Bmp signaling and a specific paracrine signal from the cardiogenic (anterior lateral) mesoderm. Endodermal expression of Fox2a, in contrast, requires the mesoderm but is independent of Bmp signaling. In vivo induction assays show that the ability of BMP2 to activate Hex expression in the endoderm is restricted to a region that is only slightly larger than the endogenous domain of Hex expression. Although Fgfs can substitute for the cardiogenic mesoderm to support the expression of Hex and albumin in the endoderm, several Fgf genes are expressed in the anterior lateral endoderm but an Fgf expressed predominantly in the mesoderm was not identified. Studies also showed that Fgf gene expression in the endoderm does not require a signal from the mesoderm. Mechanisms regulating endodermal signaling pathways activated by Fgfs may therefore be more complex than previously appreciated.  相似文献   

5.
6.
Expression pattern of novel chick T-box gene, Tbx20   总被引:2,自引:0,他引:2  
Little is known about the molecular mechanisms involved with the initial specifications of the cardiac mesoderm. In order to identify potential regulatory factors that play important roles in early heart specification, we attempted to isolate the chick H15-related T-box gene and analyze its expression pattern during early development. The chick Tbx20 gene was found to be highly homologous to human, mouse, and zebrafish hrT/Tbx20. Its expression was initially detected in the posterior lateral mesoderm, after which it expanded to the anterior and was intensively co-expressed with a cardiogenic gene, Nkx2.5, in the anterior lateral mesoderm.  相似文献   

7.
During early embryogenesis, heart and skeletal muscle progenitor cells are thought to derive from distinct regions of the mesoderm (i.e. the lateral plate mesoderm and paraxial mesoderm, respectively). In the present study, we have employed both in vitro and in vivo experimental systems in the avian embryo to explore how mesoderm progenitors in the head differentiate into both heart and skeletal muscles. Using fate-mapping studies, gene expression analyses, and manipulation of signaling pathways in the chick embryo, we demonstrate that cells from the cranial paraxial mesoderm contribute to both myocardial and endocardial cell populations within the cardiac outflow tract. We further show that Bmp signaling affects the specification of mesoderm cells in the head: application of Bmp4, both in vitro and in vivo, induces cardiac differentiation in the cranial paraxial mesoderm and blocks the differentiation of skeletal muscle precursors in these cells. Our results demonstrate that cells within the cranial paraxial mesoderm play a vital role in cardiogenesis, as a new source of cardiac progenitors that populate the cardiac outflow tract in vivo. A deeper understanding of mesodermal lineage specification in the vertebrate head is expected to provide insights into the normal, as well as pathological, aspects of heart and craniofacial development.  相似文献   

8.
The expression pattern of the receptor tyrosine kinase gene EphB3 was examined during the early stages of chick embryogenesis, and is described in this report. In the gastrula, EphB3 is expressed in epiblast cells adjacent to and entering the anterior portion of the primitive streak; expression is extinguished once cells have ingressed. At headfold stages, EphB3 is strongly transcribed in the floor of the foregut and in anterior lateral endoderm, and is expressed in the subjacent cardiogenic mesoderm. EphB3 is transiently expressed in the lateral ectoderm, neural tube, and neural crest during these stages. Later neural expression is localized to the mesencephalon. In the somitic mesoderm, EphB3 is initially expressed in the sclerotome, but later is expressed predominantly in the dermatome. Prominent expression is also detected in the developing heart, liver, posterior ventral limb bud mesenchyme, pharyngeal arches, and head mesenchyme.  相似文献   

9.
Two populations of axial mesoderm cells can be recognised in the chick embryo, posterior notochord and anterior prechordal mesoderm. We have examined the cellular and molecular events that govern the specification of prechordal mesoderm. We report that notochord and prechordal mesoderm cells are intermingled and share expression of many markers as they initially extend out of Hensen's node. In vitro culture studies, together with in vivo grafting experiments, reveal that early extending axial mesoderm cells are labile and that their character may be defined subsequently through signals that derive from anterior endodermal tissues. Anterior endoderm elicits aspects of prechordal mesoderm identity in extending axial mesoderm by repressing notochord characteristics, briefly maintaining gsc expression and inducing BMP7 expression. Together these experiments suggest that, in vivo, signalling by anterior endoderm may determine the extent of prechordal mesoderm. The transforming growth factor (beta) (TGFbeta) superfamily members BMP2, BMP4, BMP7 and activin, all of which are transiently expressed in anterior endoderm mimic distinct aspects of its patterning actions. Together our results suggest that anterior endoderm-derived TGFbetas may specify prechordal mesoderm character in chick axial mesoderm.  相似文献   

10.
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four‐chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart‐forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium‐secreted insulin‐like growth factor, the expression of which is regulated by hepatic mesoderm‐derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium‐derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.  相似文献   

11.
The restriction of the heart morphogenetic field in Xenopus laevis   总被引:2,自引:0,他引:2  
We have examined the spatial restriction of heart-forming potency in Xenopus laevis embryos, using an assay system in which explants or explant recombinates are cultured in hanging drops and scored for the formation of a beating heart. At the end of neurulation at stage 20, the heart morphogenetic field, i.e., the area that is capable of heart formation when cultured in isolation, includes anterior ventral and ventrolateral mesoderm. This area of developmental potency does not extend into more posterior regions. Between postneurula stage 23 and the onset of heart morphogenesis at stage 28, the heart morphogenetic field becomes spatially restricted to the anterior ventral region. The restriction of the heart morphogenetic field during postneurula stages results from a loss of developmental potency in the lateral mesoderm, rather than from ventrally directed morphogenetic movements of the lateral mesoderm. This loss of potency is not due to the inhibition of heart formation by migrating neural crest cells. During postneurula stages, tissue interactions between the lateral mesoderm and the underlying anterior endoderm support the heart-forming potency in the lateral mesoderm. The lateral mesoderm loses the ability to respond to this tissue interaction by stages 27-28. We speculate that either formation of the third pharyngeal pouch during stages 23-27 or lateral inhibition by ventral mesoderm may contribute to the spatial restriction of the heart morphogenetic field.  相似文献   

12.
We have examined the spatial restriction of heart-forming potency in Xenopus laevis embryos, using an assay system in which explants or explant recombinates are cultured in hanging drops and scored for the formation of a beating heart. At the end of neurulation at stage 20, the heart morphogenetic field, i.e., the area that is capable of heart formation when cultured in isolation, includes anterior ventral and ventrolateral mesoderm. This area of developmental potency does not extend into more posterior regions. Between postneurula stage 23 and the onset of heart morphogenesis at stage 28, the heart morphogenetic field becomes spatially restricted to the anterior ventral region. The restriction of the heart morphogenetic field during postneurula stages results from a loss of developmental potency in the lateral mesoderm, rather than from ventrally directed morphogenetic movements of the lateral mesoderm. This loss of potency is not due to the inhibition of heart formation by migrating neural crest cells. During postneurula stages, tissue interactions between the lateral mesoderm and the underlying anterior endoderm support the heart-forming potency in the lateral mesoderm. The lateral mesoderm loses the ability to respond to this tissue interaction by stages 27–28. We speculate that either formation of the third pharyngeal pouch during stages 23–27 or lateral inhibition by ventral mesoderm may contribute to the spatial restriction of the heart morphogenetic field.  相似文献   

13.
N-cadherin, a Ca(2+)-dependent cell adhesion molecule, has been localized previously to the mesoderm during chick gastrulation and to adherens junctions in beating avian hearts. However, a systematic study of the dynamic nature of N-cadherin localization in the critical early stages of heart development is lacking. The presented work defines the changes in the spatial and temporal expression of N-cadherin during early stages of chick heart development, principally between Hamburger and Hamilton stages 5-8, 18-29 hr of development. During gastrulation N-cadherin appears evenly distributed in the heart forming region. As development proceeds to form the pericardial coelom (stages 6, 7, and 8, i.e., between 22 and 26 hr of development) N-cadherin localization becomes restricted to the more central areas of the mesoderm. The localization also shows a periodicity that correlates closely with the distance between foci of cavities that eventually coalesce to form the coelom. This distribution suggests that N-cadherin may have a function in the sorting out of somatic and splanchnic mesoderm cells to form the coelom. This separation of the mesoderm in the embryo for the first time physically delineates the precardiac mesoderm population. Concomitant with cell sorting during coelom formation, the precardiac cells change shape and show a distinct polarity as conveyed by (1) the apical expression of N-cadherin on precardiac cell surfaces lining the pericardial coelom, (2) the primarily lateral expression of Na+,K(+)-ATPase, and (3) an enrichment of integrin (beta 1 subunit) on basal cell surfaces. The somatic mesoderm cells apparently down-regulate N-cadherin expression. N-cadherin is also absent from the precardiac cells close to the endoderm. The latter cells eventually form the endocardium, i.e., the endothelial lining of the heart. By contrast, in the tubular, beating heart N-cadherin is found throughout the myocardium. In summary, immunolocalization patterns of N-cadherin during early cardiogenesis suggest that this cell adhesion molecule has a major role in the dynamics of pericardial coelom formation. Subsequently, its continued expression during cell differentiation of the cardiomyocyte to form the myocardium, but not endocardium, suggests N-cadherin is an essential morphoregulatory molecule in heart organogenesis.  相似文献   

14.
Evidence for a role of Smad6 in chick cardiac development.   总被引:4,自引:0,他引:4  
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-beta) superfamily, are obligatory growth factors for early embryogenesis and heart formation. SMAD proteins transduce signals of the TGF-beta superfamily. We isolated chicken Smad6 (cSmad6), a member of inhibitory SMADs, and found its expression to be remarkably restricted to the developing heart, eyes, and limbs. cSmad6 expression was detected in the cardiogenic region of stage 5 embryos and overlapped Nkx2-5 and bmp-2, -4, and -7 expression. Throughout development, cSmad6 was expressed strongly in the heart, primarily in the myocardium, endocardium, and endocardial cushion tissue. Myocardial expression of cSmad6 was stronger in the forming septum, where highly localized expression of bmp-2 and -4 was also observed. Ectopically applied BMP-2 protein induced the expression of cSmad6, a putative negative regulator of BMP-signaling pathway, in anterior medial mesoendoderm of stage 4-5 embryos. In addition, blocking of BMP signaling using Noggin downregulated cSmad6 in cardiogenic tissue. cSmad1, one of the positive mediators of BMP signaling, was also expressed in cardiogenic region, but was not BMP-2 inducible. Our data suggest that cSmad6 has a role in orchestrating BMP-mediated cardiac development. We propose the possible mechanism of action of cSmad6 as modulating BMP signal by keeping a balance between constitutively expressed pathway-specific cSmad1 and ligand-induced inhibitory cSmad6 in the developing heart.  相似文献   

15.
The embryonic dorsal vessel in Drosophila possesses anteroposterior polarity and is subdivided into two chamber-like portions, the aorta in the anterior and the heart in the posterior. The heart portion features a wider bore as compared with the aorta and develops inflow valves (ostia) that allow the pumping of hemolymph from posterior toward the anterior. Here, we demonstrate that homeotic selector genes provide positional information that determines the anteroposterior subdivision of the dorsal vessel. Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) are expressed in distinct domains along the anteroposterior axis within the dorsal vessel, and, in particular, the domain of abd-A expression in cardioblasts and pericardial cells coincides with the heart portion. We provide evidence that loss of abd-A function causes a transformation of the heart into aorta, whereas ectopic expression of abd-A in more anterior cardioblasts causes the aorta to assume heart-like features. These observations suggest that the spatially restricted expression and activity of abd-A determine heart identities in cells of the posterior portion of the dorsal vessel. We also show that Abd-B, which at earlier stages is expressed posteriorly to the cardiogenic mesoderm, represses cardiogenesis. In light of the developmental and morphological similarities between the Drosophila dorsal vessel and the primitive heart tube in early vertebrate embryos, these data suggest that Hox genes may also provide important anteroposterior cues during chamber specification in the developing vertebrate heart.  相似文献   

16.
GATA-6 is expressed in presumptive cardiac mesoderm before gastrulation, but its role in heart development has been unclear. Here we show that Xenopus and zebrafish embryos, injected with antisense morpholino oligonucleotides designed specifically to knock-down translation of GATA-6 protein, are severely compromised for heart development. Injected embryos express greatly reduced levels of contractile machinery genes and, at the same stage, of regulatory genes such as bone morphogenetic protein-4 (BMP-4) and the Nkx2 family. In contrast, initial BMP and Nkx2 expression is normal, suggesting a maintenance role for GATA-6. Endoderm is critical for heart formation in several vertebrates including Xenopus, and separate perturbation of GATA-6 expression in the deep anterior endoderm and in the overlying heart mesoderm shows that GATA-6 is required in both for cardiogenesis. The GATA-6 requirement in cardiac mesoderm was confirmed in zebrafish, an organism in which endoderm is thought not to be necessary for heart formation. We therefore conclude that proper maturation of cardiac mesoderm requires GATA-6, which functions to maintain BMP-4 and Nkx2 expression.  相似文献   

17.
18.
Nkx2.5 is expressed in the cardiogenic mesoderm of avian, mouse, and amphibian embryos. To understand how various cardiac fates within this domain are apportioned, we fate mapped the mesodermal XNkx2.5 domain of neural tube stage Xenopus embryos. The lateral portions of the XNkx2.5 expression domain in the neural tube stage embryo (stage 22) form the dorsal mesocardium and roof of the pericardial cavity while the intervening ventral region closes to form the myocardial tube. XNkx2.5 expression is maintained throughout the period of heart tube morphogenesis and differentiation of myocardial, mesocardial, and pericardial tissues. A series of microsurgical experiments showed that myocardial differentiation in the lateral portion of the field is suppressed during normal development by signals from the prospective myocardium and by tissues located more dorsally in the embryo, in particular the neural tube. These signals combine to block myogenesis downstream of XNkx2.5 and at or above the level of contractile protein gene expression. We propose that the entire XNkx2.5/heart field is transiently specified as cardiomyogenic. Suppression of this program redirects lateral cells to adopt dorsal mesocardial and dorsal pericardial fates and subdivides the field into distinct myogenic and nonmyogenic compartments.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号