共查询到20条相似文献,搜索用时 10 毫秒
1.
To determine the physiological significance of tumor necrosis factor-alpha (TNFalpha) in the regulation of endometrial prostaglandin (PG) release in cattle, we investigated the effects of TNFalpha on the secretion of PGE2 and PGF2alpha by bovine endometrium during the estrous cycle. Bovine uteri were classified into six stages (estrus: Day 0, early luteal 1: Days 2 to 3, early luteal 11: Days 5 to 6, mid-luteal: Days 8 to 12, late luteal: Days 15 to 17 and follicular: Days 19 to 21). After 1 h of pre-incubation, endometrial tissues (20 to 30 mg) were exposed to 0 or 0.6 nM TNFalpha for 4 h. The PGE2 concentrations in the medium were higher in the luteal stages than in the follicular stage and in estrus. In contrast, PGF2alpha concentrations were higher in the follicular stage and in estrus than in the luteal stages. The ratio of the basal concentrations of PGE2 and PGF2alpha (PGE2/PGF2alpha ratio) was higher in the luteal stages than in the follicular stage and in estrus. Although TNFalpha stimulated both PGE2 and PGF2alpha secretion during the entire period of the estrous cycle, the level of stimulation of TNFalpha on PGE2 output by the bovine endometrium does not show the same cyclical changes as that shown on PGF2alpha output. The stimulation of TNFalpha resulted in a decrease in the PGE2/PGF2alpha ratio only in the late luteal stage. Furthermore, TNFalpha stimulated PGE2 secretion in stromal, but not epithelial cells. The overall results suggest that TNFalpha is a potent regulator of endometrial PGE2 secretion as well as PGF2alpha secretion during the entire period of estrous cycle, and that TNFalpha plays different roles in the regulation of secretory function of bovine endometrium at different phases of the estrous cycle. 相似文献
2.
The superoxide dismutases (SODs) are first-line enzymatic antioxidants that dismute superoxide anion (O(2)(-)) to produce hydrogen peroxide (H(2)O(2)). The primary objective was to characterize, by western blot analysis, the expression of two SODs, the cytosolic (Cu,ZnSOD or SOD1) and the mitochondrial (MnSOD or SOD2) forms in three sections of the oviduct, i.e. isthmus (I), ishtmic-ampullary junction (IA), and ampulla (A), during the estrous cycle. The Cu,ZnSOD and MnSOD proteins were mostly expressed in the ampulla (I相似文献
3.
Wijayagunawardane MP Miyamoto A Taquahashi Y Acosta TJ Nishimura M Sato K 《Biology of reproduction》2001,65(3):799-804
Angiotensin II (Ang II) and atrial natriuretic peptide (ANP) may be involved in local regulation of the oviductal contraction during the estrous cycle. Thus, the in vitro effects of Ang II and ANP on the secretion and contraction of bovine oviduct during the follicular, postovulatory, and luteal phases were investigated. An in vitro microdialysis system (MDS) was utilized to determine the intraluminal release of prostaglandins (PGs), Ang II, and endothelin-1 (ET-1) from the bovine oviducts as well as to observe the effect of Ang II and ANP on the local secretion of these substances. The basal release of PGs, ET-1, and Ang II was higher (P < 0.05) during the follicular and postovulatory phases than during the luteal phase. Stimulation by infusion of Ang II (10(-6) M) or ANP (10(-7) M) into the MDS was carried out for 4 h between 4 and 8 h of incubation. In the oviducts from the follicular and postovulatory phases, the infusion of ANP increased the release of Ang II, but not of ET-1. Infusion of Ang II stimulated the release of ET-1. Both Ang II and ANP increased PGE(2) and PGF(2alpha) release. In the contraction study, direct administration of Ang II (10(-7) M) or ANP (10(-8) M) into the medium during the follicular and postovulatory phases increased the amplitude of oviductal contraction. In contrast, these substances did not show any effect in the contraction and secretion of oviducts from cows during the midluteal phase. These results indicate that during the periovulatory period, Ang II and ANP stimulate the contractile amplitude of the oviduct in vitro. In addition to their direct action on oviductal contraction, Ang II may activate oviductal secretion of ET-1 and PGs. Likewise, ANP stimulates oviductal secretion of PGs and Ang II. Hence, the overall results suggest the existence of a functional endothelin-angiotensin-ANP system in the bovine oviduct during the periovulatory period, which may regulate the oviductal contraction to ensure maximum efficiency of gamete/embryo transport through the oviduct. 相似文献
4.
5.
6.
7.
Turnour necrosis factor stimulates endothelin-1 gene expression in cultured bovine endothelial cells
We have studied the effect of human recombinant tumour necrosis factor-alpha (TNF-alpha) on gene expression and production of endothelin-1 in cultured bovine aortic endothelial cells. TNF-alpha (10 and 100 ng ml(-1)) increased in a time dependent manner the preproendothelin-1 mRNA levels in respect to unstimulated endothelial cells. TNF-alpha induced endothelin-1 gene expression was associated with a parallel increase in the release of the corresponding peptide in the culture medium. These findings suggest that the enhanced synthesis and release of endothelin-1 occurring in conditions of increased generation of TNF, may act as a modulatory factor that counteracts the hypotensive effect and the excessive platelet aggregation and adhesion induced by TNF. 相似文献
8.
9.
Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine 总被引:2,自引:0,他引:2
Hugentobler SA Diskin MG Leese HJ Humpherson PG Watson T Sreenan JM Morris DG 《Molecular reproduction and development》2007,74(4):445-454
Up to 40% of cattle embryos die within 3 weeks of fertilization while they are nutritionally dependent on the maternal environment provided by the oviduct and uterine fluids for their development and survival. Despite this dependence there is limited information on the composition of these fluids in cattle. Amino acids are essential for the normal growth and development of the early embryo, acting as precursors of proteins and nucleic acids and as energy sources, osmolytes and signaling molecules. The objective of this study was to measure and compare the amino acid concentrations of oviduct and uterine fluid and blood plasma on different days of the estrous cycle. Oviduct fluid was collected in situ from anaesthetised heifers on Days 0, 2, 3, 4 and 6 and uterine fluid on Days 6, 8 and 14 of the estrous cycle and the concentrations of 19 amino acids determined. Glycine was the most abundant amino acid in both oviduct and uterine fluid. However, the concentrations of many amino acids differed between oviduct and uterus and many were present at higher concentrations in oviduct and uterine fluid than in blood plasma. Oviduct fluid concentrations of amino acids were not affected by day of cycle in contrast to uterine fluid for which there was a day of cycle effect on most of the amino acids. These results provide novel information on the amino acid concentrations in the maternal environment of the early cattle embryo and could form the basis for devising improved media for the production of embryos in vitro. 相似文献
10.
In the bovine up to 40% of embryos die before implantation but despite the importance of ions in oviduct and uterine fluid formation and in gamete, zygote and early embryo development there is very little published information on the ion concentrations of oviduct or uterine fluid. The free anions chloride, phosphate and sulphate and the free cations sodium, calcium, magnesium and potassium were measured in oviduct fluid on days 0, 2, 4 and 6 and in uterine fluid on days 6, 8 and 14 and in corresponding blood samples. Oviduct and uterine fluids were collected in situ. Sodium was 25-fold higher than potassium and 80-fold higher than the other ions and chloride was 10-fold higher than potassium and 40-fold higher than the other ions in oviduct and uterine fluid. Phosphate, sulphate, magnesium, potassium and calcium were at lower concentrations in all fluids. Oviduct calcium and sodium were higher on day 0 than other days. The most striking uterine differences were the higher potassium and lower chloride, sodium and magnesium on day 14 than other days. There were significant positive associations between oviduct and blood chloride, sulphate, magnesium and calcium while only uterine sulphate was positively related to its blood concentration. There was no relationship between fluid secretion rate and no association between the concentrations of systemic progesterone or oestradiol and any ion in oviduct or uterine fluid. The different concentrations and associations between ions in the oviduct, uterus and blood suggest a differential regulation of ion secretion by the oviduct and uterine epithelia. 相似文献
11.
12.
The ovarian steroids, estrogen and progesterone, regulate cellular and molecular changes which occur in the uterus during the estrous cycle. Cycles of protein synthesis, cell proliferation and differentiation, and cell death are the direct results of changes in hormone concentration. To explore the possibility that cytokines, which stimulate proliferation and differentiation of numerous types of cells, might be associated with those cyclic changes, the production of IL-1, IL-6, and TNF alpha was examined in the mouse uterus. Cytokine mRNA expression, bioactivity, and immunoreactivity were quantitated during the estrous cycle, following ovariectomy and exposure of ovariectomized mice to estrogen and progesterone. IL-1, IL-6, and TNF alpha mRNA was detected, and mRNA levels for each of the cytokines varied with the stage of the cycle. Cytokine bioactivity was expressed throughout the cycle, but levels of each cytokine were highest during proestrus and/or estrus. Immunoreactivity paralleled bioactivity. Uterus from ovariectomized mice contained little or no cytokine activity, and systemic administration of estrogen or progesterone resulted in the induction of IL-1 alpha and IL-1 beta mRNA expression. Significant amounts of IL-6 and TNF alpha mRNA appeared only following the exposure of ovariectomized mice to estrogen plus progesterone. Cytokine bioactivity and immunoreactivity also appeared following the administration of estrogen and/or progesterone. The highest activity levels for each cytokine were observed following the injection of estrogen plus progesterone. Cyclic expression of IL-1, IL-6, and TNF alpha in the uterus and their apparent regulation by estrogen and progesterone raise the possibility that cytokines and factors which are induced by cytokines are part of the regulatory process which is induced by ovarian hormones in the uterus of reproductive age females. 相似文献
13.
14.
Prostacyclin, prostaglandin F2 alpha and progesterone production by bovine luteal cells during the estrous cycle 总被引:1,自引:0,他引:1
Corpora lutea (CL) were collected from Holstein heifers on Days 5, 10, 15 and 18 (5/day) of the estrous cycle. Dispersed luteal cell preparations were made and 10(6) viable luteal cells were incubated with bovine luteinizing hormone (LH) and different amounts of arachidonic acid in the presence and absence of the prostaglandin (PG) synthetase inhibitor indomethacin. The concentrations of progesterone, PGF2 alpha and 6-keto-PGF1 alpha, the stable inactive metabolite of prostacyclin (PGI2), were measured. Day 5 CL had the greatest initial content of 6-keto-PGF1 alpha (1.01 +/- 0.16 ng/10(6) cells), and synthesized more 6-keto-PGF1 alpha (2.55 +/- 0.43) than CL collected on Days 10 (0.57 +/- 0.11), 15 (0.08 +/- 0.05) and 18 (0.19 +/- 0.03) during a 2-h incubation period. Arachidonic acid stimulated the production of 6-keto-PGF1 alpha by Days 10, 15 and 18 luteal tissue. PGF2 alpha was produced at a greater rate on Day 5 (0.69 +/- 0.17 ng/10(6) cells) than on Days 10 (0.06 +/- 0.01), 15 (0.04 +/- 0.02) and 18 (0.08 +/- 0.01). Arachidonic acid stimulated and indomethacin inhibited the production of PGF2 alpha, in most cases. The initial content of 6-keto-PGF1 alpha was higher than that of PGF2 alpha on all days of the cycle and more 6-keto-PGF1 alpha was synthesized in response to arachidonic acid addition. The ratio of 6-keto-PGF1 alpha content to PGF2 alpha content was 4.39, 2.30, 1.25 and 1.13 on Days 5, 10, 15 and 18, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
Shirasuna K Asaoka H Acosta TJ Wijayagunawardane MP Ohtani M Hayashi M Matsui M Miyamoto A 《Biology of reproduction》2004,71(5):1706-1711
It is well known that prostaglandin F(2alpha) (PGF(2alpha)) is a physiological luteolysine, and that its pulsatile release from the endometrium is a luteolytic signal in many species. There is now clear evidence that the vasoactive peptides endothelin-1 (ET-1) and angiotensin II (Ang II) interact with PGF(2alpha) in the luteolytic cascade during PGF(2alpha)-induced luteolysis in the cow. Thus, we investigated the local secretion of PGF(2alpha), ET-1, and Ang II in the corpus luteum (CL) and their real-time relationships during spontaneous luteolysis in the cow. For this purpose, an in vivo microdialysis system (MDS) implanted in the CL was utilized to observe local secretion changes within the CL microenvironment. Each CL of cyclic Holstein cows (n = 6) was surgically implanted with MDS capillary membranes (18 lines/6 cows) on Day 15 (estrus = Day 0) of the estrous cycle. The concentrations of PGF(2alpha), ET-1, Ang II, and progesterone (P) in the MDS samples were determined by enzyme immunoassays. The intraluteal PGF(2alpha) secretion slightly increased from 12 h after the onset of luteolysis (0 h) and drastically increased (by about 300%) from 24 h. Intraluteal ET-1 secretion increased from 12 h. Intraluteal Ang II secretion was elevated from 0 h and was maintained at high levels (about 180%) toward estrus. In each MDS lines (in the same microenvironment) within the regressing CL, the local releasing profiles of PGF(2alpha), ET-1, and Ang II CL positively correlated with each other (P < 0.05) at high proportions in 18 MDS lines (PGF(2alpha) vs. ET-1, 44.4%; PGF(2alpha) vs. Ang II, 55.6%; ET-1 vs. Ang II, 38.9%). In contrast, there was no clear relationship among these substances released into different MDS lines implanted in the same CL (with different microenvironments). In conclusion, we propose that the increase of PGF(2alpha), ET-1, and Ang II within the CL during luteolysis is a common phenomenon for both PGF(2alpha)-induced and spontaneous luteolysis. Moreover, this study illustrated the in vivo relationships in intraluteal release among PGF(2alpha), ET-1, and Ang II during spontaneous luteolysis in the cow. The data suggest that these vasoactive substances may interact with each other in a local positive feedback manner to activate their secretion in the regressing CL, thus accelerating and completing luteolysis. 相似文献
16.
17.
T T Stumpf M L Day M W Wolfe A C Clutter J A Stotts P L Wolfe R J Kittok J E Kinder 《Biology of reproduction》1989,41(1):91-97
Mean concentrations of luteinizing hormone (LH) increase during the follicular phase of the estrous cycle in cows. The working hypotheses in the present study were (1) that increasing concentrations of 17 beta-estradiol (E2) during the follicular phase of the estrous cycle cause an increase in mean concentration of LH by increasing amplitude of pulses of LH, and (2) that increasing E2 concentrations during this stage of the estrous cycle decrease frequency of pulses of LH in bovine females. Day of estrus was synchronized in seventeen mature cows. Treatments were initiated on Day 16 of the experimental estrous cycle (Day 0 = estrus). At Hour 0 (on Day 16), 4 cows were lutectomized. Lutectomy of these cows (EE; n = 4) allowed for endogenous secretion of E2. The remaining cows were ovariectomized at Hour 0 and were assigned to one of three E2 treatments: luteal phase E2 (LE, n = 5), increasing then decreasing E2 (DE, n = 5), and no E2 (NE, n = 3). Cows in the group that received LE were administered one E2 implant at Hour 0, which provided low circulating concentrations of E2 similar to those observed during the luteal phase of the estrous cycle. Cows in the group that received DE were administered one E2 implant at Hour 0, and additional implants were administered at 8-h intervals through Hour 40; then, two implants were removed at Hours 48 and 56, and one implant was removed at Hour 64.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
19.
The neuropeptide pituitary adenylate cyclase activating polypeptide (ADCYAP 1, or PACAP) has been demonstrated to enhance gonadotropin-releasing hormone (GnRH)-induced gonadotropin secretion and regulate gonadotropin subunit gene expression in cultures of anterior pituitary cells. In the present study, we used in situ hybridization and real-time polymerase chain reaction to examine the expression of Pacap mRNA within the paraventricular nucleus (PVN) and anterior pituitary throughout the estrous cycle of the rat. Levels of luteinizing hormone in serum and pituitary gonadotropin subunit mRNAs were evaluated and displayed cyclic fluctuations similar to those reported previously. Pacap mRNA expression in the PVN and pituitary varied significantly during the estrous cycle, with the greatest changes occurring on the day of proestrus. Pacap mRNA levels in the PVN declined significantly on the morning of diestrus. During proestrus, PVN Pacap mRNA levels significantly increased 3 h before the gonadotropin surge and then declined. Pituitary expression of Pacap mRNA also varied on the afternoon of proestrus with a moderate decline at the time of the gonadotropin surge and a significant increase later in the evening. Expression of the mRNA species encoding the 288 amino acid form of follistatin increased significantly following the rise in pituitary Pacap mRNA, at the termination of the secondary surge in follicle-stimulating hormone beta (Fshb) gene expression. These results suggest that PACAP is involved in events before and following the gonadotropin surge, perhaps through increased gonadotroph sensitivity to GnRH and suppression of Fshb subunit expression through increased follistatin, as previously observed in vitro. 相似文献
20.
Astrocytes and microglia, two glial cell populations of the CNS, have been described to be involved in many immune processes. We used defined combinations of cytokines, interferon gamma (IFN-gamma)/interleukin-1 alpha (IL-1 alpha) and IFN-gamma/tumor necrosis factor alpha (TNF alpha), to simulate different in vitro immune environments observed in disease or inflammation. In these conditions, we analyzed and compared the regulating effects of these cytokines on cell surface and total expression of MHC II and on the capacity of murine astrocytes and microglia to present peptide and native antigens to specific primed T cells. Neither IL-1 alpha nor TNF alpha affected the IFN-gamma-induced antigen presentation capacity of microglia. Astrocytes, however, were severely impaired in their capacity to present native antigens and, to a minor extent, a peptide antigen. Total expression of MHC II was not affected by these cytokines in microglia, whereas in astrocytes it was reduced by IL-1 alpha and increased by TNF alpha. Both cytokines downregulated MHC II expression at the surface of astrocytes, but not of microglia. This shows that TNF alpha affects the of IFN-gamma-immunocompetent astrocytes to process and present antigen, probably either by altering membrane traffic of MHC II and of antigen and/or enzymatic activities associated with these mechanisms, while IL-1 alpha does so by downregulating MHC II expression. Altogether, our results illustrate how differently astrocytes and microglia react toward a defined, similar immune environment. One type of cell, the astrocytes, downregulate their T-cell stimulation and MHC II trafficking, and probably also their antigen processing, functions while the other, the microglia, maintain their antigen presentation potential. 相似文献