首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How fusion pore formation during exocytosis affects the subsequent release of vesicle contents remains incompletely understood. It is unclear if the amount released per vesicle is dependent upon the nature of the developing fusion pore and whether full fusion and transient kiss and run exocytosis are regulated by similar mechanisms. We hypothesise that if consistent relationships exist between these aspects of exocytosis then they will remain constant across any age. Using amperometry in mouse chromaffin cells we measured catecholamine efflux during single exocytotic events at P0, 1 month and 6 months. At all ages we observed full fusion (amperometric spike only), full fusion preceded by fusion pore flickering (pre-spike foot (PSF) signal followed by a spike) and pure "kiss and run" exocytosis (represented by stand alone foot (SAF) signals). We observe age-associated increases in the size of all 3 modes of fusion but these increases occur at different ages. The release probability of PSF signals or full spikes alone doesn't alter across any age in comparison with an age-dependent increase in the incidence of "kiss and run" type events. However, the most striking changes we observe are age-associated changes in the relationship between vesicle size and the membrane bending energy required for exocytosis. Our data illustrates that vesicle size does not regulate release probability, as has been suggested, that membrane elasticity or flexural rigidity change with age and that the mechanisms controlling full fusion may differ from those controlling "kiss and run" fusion.  相似文献   

2.
Exocytosis of secretory vesicles begins with a fusion pore connecting the vesicle lumen to the extracellular space. This pore may then expand or it may close to recapture the vesicle intact. The contribution of the latter, termed kiss-and-run, to exocytosis of pancreatic beta cell large dense-core vesicles (LDCVs) is controversial. Examination of single vesicle fusion pores demonstrated that rat beta cell LDCVs can undergo exocytosis by rapid pore expansion, by the formation of stable pores, or via small transient kiss-and-run fusion pores. Elevation of cAMP shifted LDCV fusion pore openings to the transient mode. Under this condition, the small fusion pores were sufficient for release of ATP, stored within LDCVs together with insulin. Individual ATP release events occurred coincident with amperometric "stand alone feet" representing kiss-and-run. Therefore, the LDCV kiss-and-run fusion pores allow small transmitter release but likely retain the larger insulin peptide. This may represent a mechanism for selective intraislet signaling.  相似文献   

3.
Around 30% of exocytosis events recorded by amperometry at carbon fiber microelectrodes exhibit a pre-spike feature (PSF) termed a “foot”. This wave is associated with the release of the neurotransmitters via a transitory fusion pore, whilst the large, main exocytotic spike is due to complete release. The amperometric data reported herein were obtained using bovine chromaffin cells stimulated with either potassium or barium ions, two commonly-employed elicitors of exocytosis. Identical trends are observed with both activators: (i) they induce the same ratio (close to 30%) of events with a foot in the population of amperometric spikes, and (ii) spikes with a foot can be divided into two primary categories, depending on the temporal variation of the current wave (viz. as a ramp, or a ramp followed by a plateau). Correlations between the characteristics of the whole current spike, and of its observed foot, have been sought; such analyses demonstrate that the maximum current of both foot and spike signals are highly correlated, but, in contrast, the integrated charges of both are poorly correlated. Moreover, the temporal duration of the PSF is fully uncorrelated with any parameter pertaining to the main current spike. On the basis of these reproducible observations, it is hypothesized that the characteristics (dimensions and topology, at least) of each secretory vesicle determine the probability of formation of the fusion pore and its maximum size, whilst molecular factors of the cell membrane control its duration, and, consequently, the amount delivered prior to the massive exocytosis of catecholamines observed as a spike in amperometry.  相似文献   

4.
The earliest event in exocytosis is the formation of a fusion pore, an aqueous channel that connects the lumen of a secretory granule with the extracellular space. We can observe the formation of individual fusion pores and their subsequent dilation or closure by measuring the changes in the admittance of patch-clamped mast cells during GTP gamma S-stimulated exocytotic fusion. To investigate the molecular structure of the fusion pore, we have studied the temperature dependency of the rate constants for fusion pore formation and closure. An Arrhenius plot of the rate of fusion pore formation shows a simple linear relationship with an apparent activation energy of 23 kcal/mol. In contrast, the Arrhenius plot of the rate of closure of the fusion pore is discontinuous, with the break at approximately 13 degrees C. Above the break point, the rate of closure has a weak temperature dependence (7 kcal/mol), whereas below 13 degrees C the rate of closure is temperature independent. This type of temperature dependency is characteristic of events that depend on diffusion in a lipid phase that undergoes a fluid-solid phase transition. We propose that the formation of the fusion pore is regulated by the conformational change of a molecular structure with a high activation energy, whereas the closure of the fusion pore is regulated by lipids that become phase separated at 13 degrees C.  相似文献   

5.
Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca(2+) sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca(2+) sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell.  相似文献   

6.
Neurotransmitters and hormones are released from neurosecretory cells by exocytosis (fusion) of synaptic vesicles, large dense-core vesicles and other types of vesicles or granules. The exocytosis is terminated and followed by endocytosis (retrieval). More than fifty years of research have established full-collapse fusion and clathrin-mediated endocytosis as essential modes of exo-endocytosis. Kiss-and-run and vesicle reuse represent alternative modes, but their prevalence and importance have yet to be elucidated, especially in neurons of the mammalian CNS. Here we examine various modes of exo-endocytosis across a wide range of neurosecretory systems. Full-collapse fusion and kiss-and-run coexist in many systems and play active roles in exocytotic events. In small nerve terminals of CNS, kiss-and-run has an additional role of enabling nerve terminals to conserve scarce vesicular resources and respond to high-frequency inputs. Full-collapse fusion and kiss-and-run will each contribute to maintaining cellular communication over a wide range of frequencies.  相似文献   

7.
The fusion pore     
The secretory process requires many different steps and stages. Vesicles must be formed and transported to the target membrane. They must be tethered or docked at the appropriate sites and must be prepared for fusion (priming). As the last step, a fusion pore is formed and the contents are released. Release of neurotransmitter is an extremely rapid event leading to rise times of the postsynaptic response of less than 100 micro s. The release thus occurs during the initial formation of the exocytotic fusion pore. To understand the process of synaptic transmission, it is thus of outstanding importance to understand the molecular structure of the fusion pore, what are the properties of the initial fusion pore, how these properties affect the release process and what other factors may be limiting the kinetics of release. Here we review the techniques currently employed in fusion pore studies and discuss recent data and opinions on exocytotic fusion pore properties.  相似文献   

8.
Various studies have focused in the relative contribution of different voltage-activated Ca2+ channels (VACC) to total transmitter release. However, how Ca2+ entry through a given VACC subtype defines the pattern of individual exocytotic events remains unknown. To address this question, we have used amperometry in bovine chromaffin cells. L, N, and P/Q channels were individually or jointly blocked with furnidipine, ω-conotoxin GVIA, ω-agatoxin IVA, or ω-conotoxin MVIIC. The three channel types contributed similarly to cytosolic Ca2+ signals induced by 70 mmol/L K+. However, they exhibited different contributions to the frequency of exocytotic events and they were shown to differently regulate the final steps of the exocytosis. When compared with the other VACC subtypes, Ca2+ entry through P/Q channels effectively induced exocytosis, it decreased fusion pore stability and accelerated its expansion. Conversely, Ca2+ entry through N channels was less efficient in inducing exocytotic events, also slowing fusion pore expansion. Finally, Ca2+ entry through L channels inefficiently induced exocytosis, and the individual blockade of this channel significantly modified fusion pore dynamics. The distance between a given VACC subtype and the release sites could account for the differential effects of the distinct VACC on the fusion pore dynamics.  相似文献   

9.
In regulated exocytosis vesicular and plasma membranes merge to form a fusion pore in response to stimulation. The nonselective cation HCN channels are involved in the regulation of unitary exocytotic events by at least 2 mechanisms. They can affect SNARE-dependent exocytotic activity indirectly, via the modulation of free intracellular calcium; and/or directly, by altering local cation concentration, which affects fusion pore geometry likely via electrostatic interactions. By monitoring membrane capacitance, we investigated how extracellular cation concentration affects fusion pore diameter in pituitary cells and astrocytes. At low extracellular divalent cation levels predominantly transient fusion events with widely open fusion pores were detected. However, fusion events with predominately narrow fusion pores were present at elevated levels of extracellular trivalent cations. These results show that electrostatic interactions likely help determine the stability of discrete fusion pore states by affecting fusion pore membrane composition.  相似文献   

10.
In regulated exocytosis vesicular and plasma membranes merge to form a fusion pore in response to stimulation. The nonselective cation HCN channels are involved in the regulation of unitary exocytotic events by at least 2 mechanisms. They can affect SNARE-dependent exocytotic activity indirectly, via the modulation of free intracellular calcium; and/or directly, by altering local cation concentration, which affects fusion pore geometry likely via electrostatic interactions. By monitoring membrane capacitance, we investigated how extracellular cation concentration affects fusion pore diameter in pituitary cells and astrocytes. At low extracellular divalent cation levels predominantly transient fusion events with widely open fusion pores were detected. However, fusion events with predominately narrow fusion pores were present at elevated levels of extracellular trivalent cations. These results show that electrostatic interactions likely help determine the stability of discrete fusion pore states by affecting fusion pore membrane composition.  相似文献   

11.
Amperometry is widely used to study exocytosis of neurotransmitters and hormones in various cell types. Analysis of the shape of the amperometric spikes that originate from the oxidation of monoamine molecules released during the fusion of individual secretory vesicles provides information about molecular steps involved in stimulation-dependent transmitter release. Here we present an overview of the methodology of amperometric signal processing, including (i) amperometric signal acquisition and filtering, (ii) detection of exocytotic events and determining spike shape characteristics, and (iii) data manipulation and statistical analysis. The purpose of this review is to provide practical guidelines for performing amperometric recordings of exocytotic activity and interpreting the results based on shape characteristics of individual release events.  相似文献   

12.
infrastructurel techniques have shown that an early event in the exocytotic fusion of a secretory vesicle is the formation of a narrow, water-filled pore spanning both the vesicle and plasma membranes and connecting the lumen of the secretory vesicle to the extracellular environment. Smaller precursors of the exocytotic fusion pore have been detected using electrophysio-logical techniques, which reveal a dynamic fusion pore that quickly expands to the size of the pores seen with electron microscopy. While it is clear that in the latter stages of expansion, when the size of the fusion pore is several orders of magnitude bigger than any known macromolecule, the fusion pore must be mainly made of lipids, the structure of the smaller precursors is unknown. Patch-clamp measurements of the activity of individual fusion pores in mast cells have shown that the fusion pore has some unusual and unexpected properties, namely that there is a large flux of lipid through the pore and the rate of pore closure has a discontinuous temperature dependency, suggesting a purely lipidic fusion pore. Moreover, comparisons of experimental data with theoretical fusion pores and with breakdown pores support the view that the fusion pore is initially a pore through a single bilayer, as would be expected for membrane fusion proceeding through a hemifusion mechanism. Based on these observations we present a model where the fusion pore is initially a pore through a single bilayer. Fusion pore formation is regulated by a macromolecular scaffold of proteins that is responsible for bringing the plasma membrane into a highly curved dimple very close to a tense secretory granule membrane, creating the architecture where the strongly attractive hydrophobic force causes the membranes to form a ‘hemifusion’ intermediate. Membrane fusion is completed by the formation of an aqueous pore after rupture of the shared bilayer. We also propose that the microenvironment of the interface when the pore first opens, dominated by the charged groups on the secretory vesicle matrix and phospholipids, will greatly influence the release of secretory products.  相似文献   

13.
We have monitored kinetics of fusion between cell pairs consisting of a single influenza hemaglutinin (HA)-expressing cell and a single erythrocyte (RBC) that had been labeled with both a fluorescent lipid (Dil) in the membrane and a fluorescent solute (calcein) in the aqueous space. Initial fusion pore opening between the RBC and HA-expressing cell produced a change in RBC membrane potential (delta psi) that was monitored by a decrease in Dil fluorescence. This event was followed by two distinct stages of fusion pore dilation: the flux of fluorescent lipid (phi L) and the flux of a large aqueous fluorescent dye (phi s). We have analyzed the kinetics of events that occur as a result of transitions between a fusion pore (FP) and a solute permissive fusion pore (FPs). Our data are consistent with a fusion pore comprising six HA trimers.  相似文献   

14.
Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.  相似文献   

15.
We have used carbon-fibre amperometry to examine the kinetics of individual secretory granule fusion/release events in bovine adrenal chromaffin cells. Transfection with plasmids encoding the light chains of botulinum neurotoxins (BoNTs) was used to investigate the effects of cleavage of syntaxin or SNAP-25 on exocytosis. Expression of BoNT/C1 or BoNT/E inhibited the extent of exocytosis that was evoked by application of digitonin/Ca(2+) to permeabilise and stimulate single chromaffin cells. Following neurotoxin expression, the residual release events were no different from those of control cells in their magnitude and kinetics from analysis of the amperometric spikes. In contrast, activation of protein kinase C (PKC) resulted in a modification of the kinetics of single granule release events. Following phorbol ester treatment, the amperometric spikes showed a significant decrease in their total charge due to a decrease in their mean half-width with increases in the rate of the initial rise and also the fall to baseline of the spikes. These changes were prevented by pre-treatment with the PKC inhibitor bisindolylmaleimide. These results suggest that PKC regulates the rate of fusion pore expansion and also subsequent pore closure or granule retrieval. A PKC-mediated regulation of kiss-and-run fusion may, therefore, control the extent of catecholamine release from single secretory granules. The experimental approach used here may provide further information on the protein constituents and regulation of the fusion pore machinery.  相似文献   

16.
The stages of the complex events involved in exocytotic secretion after vesicle-cell membrane fusion have been examined at the level of individual vesicles. Catecholamine flux from single bovine adrenal medullary cells was measured with carbon-fiber microelectrodes firmly touching the cell surface. The data reveal that secretion during exocytotic events has three distinct stages: a small increase in catecholamine flux, a rapid, but not instantaneous, rise to a maximum, followed by an exponential decrease in the flux. These stages are interpreted in the following ways. The initial stage corresponds to catecholamine secretion through a fusion pore. The rate of pore expansion appears to control the rise time of the flux to its maximum value. The final exponential stage is consistent with chemical dissociation of the intravesicular matrix or gel.  相似文献   

17.
During exocytosis, vesicles in secretory cells fuse with the cellular membrane and release their contents in a Ca2+-dependent process. Release occurs initially through a fusion pore, and its rate is limited by the dissociation of the matrix-associated contents. To determine whether this dissociation is promoted by osmotic forces, we have examined the effects of elevated osmotic pressure on release and extrusion from vesicles at mast and chromaffin cells. The identity of the molecules released and the time course of extrusion were measured with fast scan cyclic voltammetry at carbon fiber microelectrodes. In external solutions of high osmolarity, release events following entry of divalent ions (Ba2+ or Ca2+) were less frequent. However, the vesicles appeared to be fused to the membrane without extruding their contents, since the maximal observed concentrations of events were less than 7% of those evoked in isotonic media. Such an isolated, intermediate fusion state, which we term "kiss-and-hold," was confirmed by immunohistochemistry at chromaffin cells. Transient exposure of cells in the kiss and hold state to isotonic solutions evoked massive release. These results demonstrate that an osmotic gradient across the fusion pore is an important driving force for exocytotic extrusion of granule contents from secretory cells following fusion pore formation.  相似文献   

18.
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase involved in synaptogenesis and brain development, and its enzymatic activity is essential for slow forms of synaptic vesicle endocytosis. Recent work also has implicated Cdk5 in exocytosis and synaptic plasticity. Pharmacological inhibition of Cdk5 modifies secretion in neuroendocrine cells, synaptosomes, and brain slices; however, the specific mechanisms involved remain unclear. Here we demonstrate that dominant-negative inhibition of Cdk5 increases quantal size and broadens the kinetics of individual exocytotic events measured by amperometry in adrenal chromaffin cells. Conversely, Cdk5 overexpression narrows the kinetics of fusion, consistent with an increase in the extent of kiss-and-run exocytosis. Cdk5 inhibition also increases the total charge and current of catecholamine released during the amperometric foot, representing a modification of the conductance of the initial fusion pore connecting the granule and plasma membrane. We suggest that these effects are not attributable to an alteration in catecholamine content of secretory granules and therefore represent an effect on the fusion mechanism itself. Finally, mutational silencing of the Cdk5 phosphorylation site in Munc18, an essential protein of the late stages of vesicle fusion, has identical effects on amperometric spikes as dominant-negative Cdk5 but does not affect the amperometric feet. Cells expressing Munc18 T574A have increased quantal size and broader kinetics of fusion. These results suggest that Cdk5 could, in part, control the kinetics of exocytosis through phosphorylation of Munc18, but Cdk5 also must have Munc18-independent effects that modify fusion pore conductance, which may underlie a role of Cdk5 in synaptic plasticity.  相似文献   

19.
It is well established that the release of surfactant phospholipids into the alveolar lumen proceeds by the exocytosis of lamellar bodies (LBs), the characteristic storage organelles of surfactant in alveolar type II cells. Consequently, the fusion of LBs with the plasma membrane and the formation of exocytotic fusion pores are key steps linking cellular synthesis of surfactant with its delivery into the alveolar space. Considering the unique structural organization of LBs or LB-associated aggregates which are found in lung lavages, and the roughly 1-microm-sized dimensions of these particles, we speculated whether the fusion pore diameter of fused LBs might be a specific hindrance for surfactant secretion, delaying or even impeding full release. In this mini-review, we have compiled published data shedding light on a possibly important role of fusion pores during the secretory process in alveolar type II cells.  相似文献   

20.
BackgroundDynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis.MethodsThus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol.ResultsDynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma.ConclusionsOur results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号