首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a preliminary article, we reported the potent allosteric enhancer activity at the A(1) adenosine receptor of a small series of 2-amino-3-(4-chlorobenzoyl)-4-[4-(aryl)piperazin-1-yl)methyl]thiophene derivatives bearing electron-withdrawing or electron-releasing groups at the para-position of the phenylpiperazine moiety. In the present study, we report the development of the compounds previously studied by modifying both the number and position of substituents on the phenylpiperazine moiety, aimed at establishing a structure-activity relationship identifying additional compounds with improved activity. The nature and the position of substituents on the phenyl ring tethered to the piperazine seemed to exert a fundamental influence on the allosteric enhancer activity, with the 3,4-difluoro 4i, 3-chloro-4-fluoro 4o, and 4-trifluoromethoxy 4ak derivatives being the most active compounds in binding (saturation and competition experiments) and functional cAMP studies. This study shows that it is also possible to obtain a good separation between allosteric enhancement and antagonistic activity at the A(1) adenosine receptor.  相似文献   

2.
Sak K  Barnard EA  Järv J 《IUBMB life》2000,50(2):99-103
The interaction of ADP, 2MeSADP, and ADPbetaS with the adenine nucleotide receptor P2Y1 in the hP2Y1-1321N1 cell line and of UDP with a receptor or receptors recognizing pyrimidine nucleotides in NG108-15 cells was studied over a wide range ofligand concentrations. Bell-shaped dose-response curves for stimulation of phosphoinositide hydrolysis were obtained in these cells. This dual behavior of the agonists studied was characterized by two dissociation constants, K(agon) and K(antag), which quantify the agonistic and antagonistic activity of these ligands and can be compared with the conventional EC50 and IC50 values, respectively. The data revealed a common pattern of agonistic and antagonistic behavior of nucleoside diphosphates and their derivatives at these two types of P2Y receptors, pointing to some similar properties of their nucleotide binding sites.  相似文献   

3.
Several series of low-molecular-mass ligands of the neuropeptide receptor subtype Y5 were prepared using a mixed strategy of synthesis on solid phase and in solution. Collections of single compounds were obtained by an automated parallel procedure which allowed quick variation and investigation of the central spacer moiety, as well as of the aromatic substituents on each side. The strategy of parallel synthesis and screening of partially purified analogs helped to select rapidly potent and selective leads which displayed comparable antagonistic potency against neuropeptide Y activity on the Y5 receptor and better receptor selectivity than the original reference compounds.  相似文献   

4.
Novel benzo[a]cycloheptene derivatives were prepared for the purpose of searching new neuropeptide Y-Y5 (NPY-Y5) receptor antagonists. The structure-activity relationships are described and compound 2o (FR226928) showed the most potent affinity for Y5 receptor of all we prepared and was found to have higher potency and better selectivity for Y5 over Y1 receptor affinities when compared with the known lead compound 1.  相似文献   

5.
A series of 2,4-diaminopyridine derivatives was synthesized and evaluated as potential candidates for neuropeptide Y (NPY) Y1 receptor positron emission tomography (PET) tracers. Derivatives bearing substitutions allowing reliable access to radiolabeling were designed, focusing on Y1 binding affinity and lipophilicity. The advanced derivatives 2n and 2o were identified as promising PET tracer candidates.  相似文献   

6.
Neuropeptide Y (NPY) has several receptors; one of them, the neuropeptide Y5 receptor (NPY5) seems involved in feeding behavior in mammals. Although this particular receptor has been extensively studied in the literature, the difficulties encountered to obtain a stable cell line expressing this recombinant receptor have impaired the development of tools necessary to establish its molecular pharmacology. We thus established a method for the functional study of new ligands. It is based upon the cotransfection in human melatonin receptor 1 (MT1)-overexpressing HEK293 cells of three plasmids encoding melanocortin receptor (MC5), neuropeptide Y5 receptor (NPY5) and a cyclic AMP response element-controlled luciferase. Once challenged with alphaMSH, the MC5 receptor activates the cyclic AMP response, through the coupling protein subunit G(s). In contrast, NPY5 agonists, through the NPY5 receptor which is negatively coupled to the same pathway, counteract the alphaMSH-mediated effect on cyclic AMP level. Using appropriate controls, this method can pinpoint compounds with antagonistic activity. Simple and straightforward, this system permits reproducible measurements of agonist or antagonist effects in the presence of neuropeptide Y, the natural agonist. This method has the advantage over already existing methods and beyond its apparent complexity, to enhance the cyclic AMP concentration at a 'physiological' level, by opposition to a forskolin-induced adenylate cyclase activation. Finally, to further validate this assay, we showed results from (1) a series of natural peptidic agonists that permitted the standardization and (2) a series of potent nonpeptidic antagonists (affinity >10(-9) M) that form a new class of active NPY5 receptor antagonists.  相似文献   

7.
The design of non-peptide, Y1-selective antagonists of neuropeptide Y (NPY) as pharmacological tools is in progress and is increasingly important as therapeutic applications are expected. Starting from the potent histamine H2 agonist and weak NPY Y1 antagonist arpromidine, 16 imidazolylpropylguanidine derivatives were synthesized and tested for Y1 antagonistic activity (inhibition of NPY-stimulated Ca2+ increase in human erythroleukemic cells), where the pheniramine-like moiety of arpromidine was replaced with 2-pyridylaminoalkyl, benzyl-(2-pyridyl)aminoalkyl, and phenyl-(2-pyridyl)alkylaminoalkyl partial structures derived from mepyramine. The pA2 values of the most active compounds are in the range of 6.2-6.5. Quantitative structure-activity relationships (QSAR) were investigated by fragment regression analysis. Results indicate that a tetramethylene spacer between the guanidino group and the amino nitrogen is optimal. For an at least moderate degree of Y1 antagonistic activity, a second benzyl or phenyl group must be present in addition to the 2-pyridyl ring. At this second group, hydrophobic substituents such as 3,4-di-CI and 4-Br further enhance Y1 antagonism. The most active derivative additionally bears a 5-Br substituent at the 2-pyridyl moiety. Structure-activity relationships suggest that the compounds might be able to partially imitate the role of NPY when interacting with Y1 receptors and thus behave as moderate non-peptide NPY Y1 antagonists.  相似文献   

8.
A series of spiroindoline-3,4′-piperidine derivatives were synthesized and evaluated for their binding affinities and antagonistic activities at Y5 receptors. Potent Y5 antagonists were tested for their oral bioavailabilities and brain penetration in rats. Some of the antagonists showed good oral bioavailability and/or good brain penetration. In particular, compound 6e was orally bioavailable and brain penetrant, and oral administration of 6e inhibited bPP-induced food intake in rats with a minimum effective dose of 10 mg/kg.  相似文献   

9.
We have evaluated 3 newly developed neuropeptide Y receptor antagonists in various in vitro binding and bioassays: BIBO3304 (Y1), T4[NPY33-36]4 (Y2), and CGP71683A (Y5). In rat brain homogenates, BIBO3304 competes for the same population of [125I][Leu31,Pro34] peptide YY (PYY) binding sites (75%) as BIBP3226, but with a 10 fold greater affinity (IC50 of 0.2 +/- 0.04 nM for BIBO3304 vs. 2.4 +/- 0.07 nM for BIBP3226),while CGP71683A has high affinity for 25% of specific [125I][Leu31,Pro34]PYY binding sites. Both BIBO3304 and CGP71683A (at 1.0 microM) were unable to compete for a significant proportion of specific [125I]PYY3-36/Y2 sites. The purported Y2 antagonist T4[NPY33-36]4 competed against [125I]PYY3-36 binding sites with an affinity of 750 nM. These results were confirmed in HEK 293 cells transfected with either the rat Y1, Y2, Y4, or Y5 receptor cDNA. BIBO3304, but not CGP71683A, competed with high affinity for [125I][Leu31,Pro34]PYY binding sites in HEK 293 cells transfected with the rat Y1 receptor cDNA, whereas the reverse profile was observed upon transfection with the rat Y5 receptor cDNA. Additionally, both molecules were inactive at Y2 and Y4 receptor subtypes expressed in HEK 293 cells. Receptor autoradiographic studies revealed the presence of [125I][Leu31,Pro34]PYY/BIBO3304-insensitive sites in the rat brain as reported previously for BIBP3226. Finally, the selective antagonistic properties of BIBO3304 were demonstrated in a Y1 bioassay (rabbit saphenous vein; pA2 value of 9.04) while being inactive in Y2 (rat vas deferens) and Y4 (rat colon) bioassays. These results confirm the high affinity and selectivity of BIBO3304 and CGP71683A for the Y1 and Y5 receptor subtypes, respectively, while the purported Y2 antagonist, T4[NPY33-36]4 possesses rather low affinity for this receptor.  相似文献   

10.
Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.  相似文献   

11.
NPY is the most potent orexigenic agent known to man, with NPY Y1 and NPY Y5 being the receptor subtypes that are most likely responsible for centrally-mediated NPY-induced feeding responses. Based on the aforementioned, novel hydrazide derivatives were prepared for the purpose of searching new NPY Y5 receptor antagonists. Many of the compounds exhibited nanomolar binding affinity for this receptor, affording trans-N-(4-[N'-(3,4-dichlorophenyl)hydrazinocarbonyl]cyclohexylmethyl)-4-fluorobenzenesulfonamide, which showed the best activity (IC(50)=0.43nM).  相似文献   

12.
A series of 2-pyridone-containing imidazoline derivatives was synthesized and evaluated as neuropeptide Y Y5 receptor antagonists. Optimization of the 2-pyridone structure on the 2-position of the imidazoline ring led to identification of 1-(difluoromethyl)-5-[(4S,5S)-4-(4-fluorophenyl)-4-(6-fluoropyridin-3-yl)-5-methyl-4,5-dihydro-1H-imidazol-2-yl]pyridin-2(1H)-one (7m). Compound 7m displayed statistically significant inhibition of food intake in an agonist-induced food intake model in SD rats and no adverse cardiovascular effects in anesthetized dogs. In addition, markedly higher brain penetrability and a lower plasma Occ90 value were observed in P-gp-deficient mdr1a (?/?) mice compared to mdr1a (+/+) mice after oral administration of 7m.  相似文献   

13.
Neuropeptide Y is one of the most potent appetite stimulating hormones known. Novel thiophene and benzo[b]thiophene hydrazide derivatives were synthetized and evaluated biologically as NPY Y(1) and Y(5) receptor subtype antagonists. They were found to have nanomolar binding affinities for human NPY Y(5) receptor, obtaining the lead compound, trans-N-4-[N'-(thiophene-2-carbonyl)hydrazinocarbonyl]cyclohexylmethyl-4-bromobenzenesulfonamide, which binds with a 7.70 nM IC(50) to the hY(5) receptor.  相似文献   

14.
Modified adenosine derivatives may lead to the development of P2Y(12) antagonists that are potent, selective, and bind reversibly to the receptor. Analogues of 2',3'-trans-styryl acetal-N6-ureido-adenosine monophosphate were prepared by modification of the 5'-position. The resulting analogues were tested for P2Y(12) antagonism in a platelet aggregation assay.  相似文献   

15.
16.
Novel imidazoline derivatives were discovered to be potent neuropeptide Y Y5 receptor antagonists. High-throughput screening of Merck sample collections against the human Y5 receptor resulted in the identification of 2,4,4-triphenylimidazoline (1), which had an IC50 of 54 nM. Subsequent optimization led to the identification of several potent derivatives.  相似文献   

17.
Novel type antagonists for P2Y(1) adenine nucleotide receptors were synthesized by coupling of adenosine 5'-OH group with oligo-aspartate chain via a carbonyl linker. All these conjugates (AdoOC(O)Asp(n), n = 1-4) inhibited the 2MeSADP-stimulated synthesis of inositol phosphates in 1321N1 human astrocytoma cells stably expressing human P2Y(1) receptors. This inhibitory effect followed the rank order AdoOC(O)Asp(2)> AdoOC(O)Asp(3)> AdoOC(O)Asp(1)> AdoOC(O)Asp(4) with antagonistic constant pA(2) = 5.4 for AdoOC(O)Asp(2). Potency of this non-phosphate inhibitor was comparable with the previously known adenosine 3',5'- and 2', 5'-bisphosphates. Chemical and biological stabilities of these novel adenosine derived antagonists of the nucleotide receptor provide perspectives of their pharmacological implication.  相似文献   

18.
A series of substituted 4-alkoxy-2-aminopyridines 2, which were formally derived from neuropeptide Y1 antagonist 1 by replacing the morpholino portion with alkoxy groups, were synthesized and evaluated as neuropeptide Y Y1 receptor antagonists. Primary structure-activity relationships and identification of potent 4-alkoxy derivatives are described.  相似文献   

19.
Objective: Neuropeptide Y (NPY), a 36‐amino acid peptide with orexigenic properties, is expressed abundantly in the central nervous system and binds to several NPY receptor subtypes. This study examines the roles of the NPY Y1, Y2, and Y5 receptor(s) in energy homeostasis. Research Methods and Procedures: We administered intracerebroventricular NPY (3 μg/d) or selective peptide agonists for the Y1, Y2, and Y5 receptor subtypes to C57Bl/6 mice for 6 days by mini‐osmotic pumps to assess the role of each receptor subtype in NPY‐induced obesity. Energy expenditure (EE) and respiratory quotient (RQ) were studied using indirect calorimetry. Adiposity was measured by DXA scanning and fat pad dissection. Insulin sensitivity was tested by whole‐blood glucose measurement after an insulin challenge. Results: Central administration of the selective Y1 agonist, Y5 agonist, or NPY for 6 days in mice significantly increased body weight, adiposity, and RQ, with significant hyperphagia in the Y5 agonist‐ and NPY‐treated groups but not in the Y1 agonist‐treated group. The NPY, Y1, or Y5 agonist‐treated mice had little change in total EE during ad libitum and pair‐feeding conditions. Conversely, selective activation of the Y2 receptor reduced feeding and resulted in a significant, but transient, weight loss. Discussion: Central activation of both Y1 and Y5 receptors increases RQ and adiposity, whereas only Y5 receptor activation reduces energy expended per energy ingested. Selective activation of Y2 autoreceptors leads to hypophagia and transient weight loss, with little effect on total EE. Our study indicates that all three NPY receptor subtypes may play a role in regulating energy homeostasis in mice.  相似文献   

20.
As a part of our continuing research on NPY-Y5 receptor antagonists in the series of novel 6-methoxybenzo[a]cycloheptene derivatives, we discovered a novel skeleton, 7-methoxy-1-hydroxytetraline 7 which had been used as an intermediate, to be more suitable for increasing potencies leading to compound 3 (FR230481). Additionally, we discovered that the naphthalenesulfonamide moiety which was thought to be an essential pharmacophore could be replaced by the 5-chlorobenzothiazolin-3-acetic acid moiety to lead to potent compound 4 (FR233118). The structure-activity relationships on compounds 3,4 and their related derivatives are described. Unfortunately, although compounds 3 and 4 had very high affinities for Y5 receptors, their poor permeabilities to brain were shown by exo-vivo binding assays when orally administered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号