首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Divergent selection has resulted in two lines of lambs (high and low) that have a 5-fold difference in their ability to release luteinizing hormone (LH) in response to 5 micrograms of gonadotrophin-releasing hormone (GnRH). Baseline gonadotrophin concentrations, the gonadotrophin responses to a GnRH challenge and the concentrations of testosterone and oestradiol were compared in lambs which were castrated at birth and intact lambs from both selection lines at 2, 6, 10 and 20 weeks of age. The pattern of LH and follicle-stimulating hormone (FSH) secretion was similar in the two lines, but differed between the intact and the castrated lambs. Basal LH and FSH secretion were significantly higher in the castrates than in the intact lambs from both selection lines. The high-line lambs had significantly higher basal FSH concentrations at all ages tested and significantly higher basal LH concentrations during the early postnatal period. The magnitude of the gonadotrophin responses to GnRH differed significantly between the intact and the castrated lambs within each line, the amount of gonadotrophins secreted by the castrated lambs being significantly greater. The removal of gonadal negative feedback by castration did not alter the between-line difference in either LH or the FSH response to the GnRH challenge. Throughout the experimental period, the concentration of testosterone in the intact lambs was significantly greater than in the castrated lambs in both selection lines, but no significant difference was seen in the concentrations of oestradiol. No significant between-line differences were found in the peripheral concentrations of testosterone or oestradiol in the intact lambs from the two selection lines. Therefore, despite similar amounts of gonadal negative feedback in the selection lines, there were significant between-line differences in basal gonadotrophin concentrations, at 2 and 6 weeks of age, and in the LH and FSH responses to an exogenous GnRH challenge, at all ages tested. Removal of gonadal negative feedback did not affect the magnitude of the between-line difference in the response of the lines to GnRH stimulation. The results indicate that the effects of selection on gonadotrophin secretion are primarily at the level of the hypothalamo-pituitary complex.  相似文献   

2.
A high and a low response line in sheep were selected on the basis of the mean concentration of LH in 10-week-old Finn-Dorset ram lambs after an i.v. injection of 5 micrograms GnRH. After 8 male generations the mean LH response of the high line was more than 5-fold that of the low line and the heritability of the selected trait was estimated at 0.44 +/- 0.015. Highly significant line differences in mean LH response to GnRH were also found in males at 20 weeks of age and females at 10 and 20 weeks of age and the genetic correlations between the four LH response traits appear to be close to unity. Large line differences in the mean FSH response to GnRH were also found in both males and females at 10 and 20 weeks of age. Selection had little effect on the physical characteristics of lambs. High-response line ewes entering their first breeding season at about 7 months of age showed oestrus earlier in the season and had higher ovulation rates and numbers of lambs born per ewe lambing than did low-response line ewes. In the second breeding season, at about 19 months of age, the only line difference was a higher ovulation rate early in the breeding season in high-line ewes. It is suggested that these changes may be mediated by a more rapid response in high-line ewes to increased GnRH stimulation at puberty or at the beginning of the breeding season.  相似文献   

3.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

4.
Two experiments were conducted to test the working hypothesis that mean plasma concentrations of luteinizing hormone (LH) increase as a result of an increase in the frequency and amplitude of the pulsatile releases of LH in postpubertal boars after removal of gonadal steroid hormones by castration. It was further hypothesized that these changes in secretion of LH would be the result of changes in sensitivity of the pituitary to gonadotropin releasing hormone (GnRH). In Experiment 1, plasma LH was monitored in 10 postpubertal crossbred boars (13 to 14 mo old and weighing 159 +/- 6.0 kg) at 12-min intervals for 6 h before and 1 h after GnRH (375 ng/kg of body weight) on Days -1, 7, 14, 21 and 29 relative to castration. In Experiment 2, plasma LH was monitored in four castrated and five intact postpubertal boars (11 to 12 mo old and weighing 150 +/- 5.1 kg) after each of three doses of GnRH (94, 188 and 375 ng/kg) were administered to each animal. Sample collection occurred 5 wk after castration. Mean LH and frequency of pulsatile releases of LH increased as a result of castration (P<0.0001), with changes evident by Day 7 after castration. However, the amplitude of the LH pulses increased minimally after castration (P<0.10). The response to exogenous GnRH increased throughout Experiment 1 (P<0.0001), even though the amplitude of the pulsatile releases of LH (response to endogenous GnRH) did not change. Castrated animals in Experiment 2 had a greater response of LH to GnRH stimulation than intact boars (P<0.05). The dose-response curve of castrated animals was not parallel (P<0.001) to that of intact boars, and indicated that sensitivity of the pituitary to GnRH had increased in the absence of gonadal steroids. Thus, the hypotheses stated above can be accepted with the exception that castration may have a minimal effect on LH pulse amplitude. Based on the results of these experiments, we suggest that gonadal steroid hormones modulate both the size of releasable stores of LH and pituitary sensitivity to GnRH in boars.  相似文献   

5.
In the sheep and goat, exposure of anestrous females to a conspecific male odor enhances reproductive activity. Interestingly, a previous report indicated that male goat hair stimulated pulsatile luteinizing hormone (LH) secretion in the ewe. In the present study, we addressed whether ram wool affects the gonadotropin-releasing hormone (GnRH) pulse generator activity in the female goat. Five ovariectomized (OVX) goats were chronically implanted with recording electrodes in the mediobasal hypothalamus, and manifestations of the GnRH pulse generator were monitored as characteristic increases in multiple-unit activity (MUA volleys). Wool or hair samples were collected from a mature ram, ewe and male goat, and their effects on the MUA volley were examined. The exposure to ram wool induced an MUA volley within 1 min in all five OVX goats, as did the exposure to male goat hair. The ewe wool had no effect on the timing of an MUA volley occurrence. An invariable association of MUA volleys with LH pulses in the peripheral circulation was also confirmed in two OVX goats exposed to ram wool. The present results clearly indicate that exposure to ram wool stimulates pulsatile GnRH/LH release in the female goat. Since exposure to male goat hair enhances pulsatile LH secretion in the ewe, it is likely that very similar, if not identical, molecules are contained in the male-effect pheromone in the sheep and goat.  相似文献   

6.
Gonadotropin secretion was examined in ovariectomized sheep after passive immunization against gonadotropin-releasing hormone (GnRH). Infusion of ovine anti-GnRH serum, but not control antiserum, rapidly depressed serum concentrations of luteinizing hormone (LH). The anti-GnRH-induced reduction in serum LH was reversed by circhoral (hourly) administration of a GnRH agonist that did not cross-react with the anti-GnRH serum. In contrast, passive immunization against GnRH led to only a modest reduction in serum concentrations of follicle-stimulating hormone (FSH). Pulsatile delivery of the GnRH agonist did not influence serum concentrations of FSH. Continuous infusion of estradiol inhibited and then stimulated gonadotropin secretion in animals passively immunized against GnRH, with gonadotrope function driven by GnRH agonist. However, the magnitude of the positive feedback response was only 10% of the response noted in controls. These data indicate that the estradiol-induced surge of LH secretion in ovariectomized sheep is the product of estrogenic action at both hypothalamic and pituitary loci. Replacement of the endogenous GnRH pulse generator with an exogenous generator of GnRH-like pulses that were invariant in frequency and amplitude could not fully reestablish the preovulatory-like surge of LH induced by estradiol.  相似文献   

7.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

8.
Using nutritionally restricted ovariectomized lambs, we tested the hypothesis that nutritionally regulated endogenous increases in GnRH secretion (as assessed by LH pulsatility) not only alter the quantity of FSH present in the pituitary and serum, but also alter the pituitary and serum FSH isoform distribution. Eleven lambs were nutritionally restricted from weaning and ovariectomized at 12 wk of age. Beginning at 56 wk, 6 were fed ad libitum for 14 days, and the other 5 were continued on the restricted diet. Jugular blood samples were collected frequently (12-min interval) for 4 h prior to pituitary removal. Immunoreactive ovine LH (I-oLH) and immunoreactive ovine FSH (I-oFSH) concentrations were measured in sera and pituitary extracts. Bioactive (B) oFSH and I-oFSH isoform distribution patterns were determined in serum pools and pituitary extracts. Ad libitum feeding increased I-oLH pulsatility and mean concentrations of pituitary and serum I-oFSH and B-oFSH. The I-oFSH isoform distribution patterns in the pituitaries from the nutritionally restricted animals were not different from those of repleted lambs; in both, the predominant FSH peak eluted in the pH range of 3.5-5.6. A similar predominance of I-oFSH isoforms was also evident in the serum of ad libitum-fed animals. This predominance was not demonstrable in 3 of the restricted-fed animals due to low circulating concentrations of FSH (less than 2.5 ng/ml). Subsequent studies, utilizing serum from 4 additional restricted-fed lambs with circulating I-oFSH concentrations in the range of 4-14 ng/ml (but no detectable LH pulses) revealed similar predominance of oFSH isoforms in the pH 3.5-5.6 range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
抗孕53影响大鼠垂体前叶对GnRH的敏感性反应   总被引:5,自引:0,他引:5  
本实验应用动情前期大鼠垂体前叶组织块离体培养方法,观察了 A 环失碳类甾体化合物—抗孕53对 LH 基础分泌和动员性分泌的影响。实验分为对照组、GnRH 组、抗孕53组、GnRH-抗孕53组。结果表明,GnRH 可显著促进 LH 分泌并产生自激作用。GnRH 的第一次作用后,LH 分泌增加量由对照组的0.7ng/ml 增加到4.3ng/ml,而当 GnRH 第二次作用后,这一效应显著增强,由对照组的0.5ng/ml 增加到6.8ng/ml,GnRH 的两次作用效应相比,差异极显著。抗孕53可部分抑制垂体对 GnRH 的敏感性反应。抗孕53作用后,LH 分泌增加量由 GnRH 第一次作用后的4.3减至2.5ng/ml,由 GnRH 第二次作用后的6.8降至4.1ng/ml。抗孕53不影响 LH 的基础分泌,与对照组相比,两组的 LH 分泌增加量无显著差异。抗孕53对垂体的这一作用可能是通过直接影响促性腺激素细胞的代谢及调节而实现。  相似文献   

10.
Episodic GnRH input is necessary for the maintenance of LH and FSH secretion. In the current study we have assessed the requirement of a pulsatile GnRH signal for the regulation of gonadotropin alpha- and beta-subunit gene expression. Using a dispersed rat pituitary perifusion system, GnRH (10 nM) was administered as a continuous infusion vs. hourly pulses. Secretion of free alpha-subunit, LH, and FSH were monitored over 5-min intervals for the entire 12-h treatment period before the responses of alpha, LH beta, and FSH beta mRNAs were assessed. Basal release of all three glycoproteins declined slowly over 6-8 h before reaching a plateau. The cells were responsive to each pulse of GnRH, but continuous GnRH elicited only a brief episode of free alpha-subunit, LH, and FSH release, followed by a return to unstimulated levels. Despite the similar patterns of secretion, differences were observed in the responses of gonadotropin mRNAs to the two modes of GnRH. alpha mRNA increased in response to continuous (1.6-fold) or pulsatile (1.7-fold) GnRH. FSH beta mRNA was suppressed to 48% of the control value after continuous GnRH, but was stimulated over 4-fold by the pulses. LH beta mRNA was unresponsive to either treatment paradigm. We conclude that in vitro 1) alpha mRNA levels are increased in response to GnRH independent of the mode of stimulation; 2) under the conditions studied, LH beta mRNA levels are unresponsive to either mode of GnRH input; and 3) the response of FSH beta mRNA to GnRH is highly dependent on the mode of administration, with levels depressed in response to continuous GnRH, but stimulated by pulsatile GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We recently demonstrated that progesterone and estradiol inhibit pituitary LH secretion in a synergistic fashion. This study examines the direct feedback of progesterone on the estradiol-primed pituitary. Nine ovariectomized (OVX) ewes underwent hypothalamic-pituitary disconnection (HPD) and were infused with 400 ng GnRH every 2 h throughout the experiment. After 7 days of infusion, estradiol was implanted s.c. Four days later, estradiol implants were exchanged for blank implants in 4 ewes and for progesterone implants in 5 ewes. These implants remained in place for another 4 days. Blood samples were collected around exogenous GnRH pulses before and 0.5 to 96 h after implant insertion and exchange. Serum LH and progesterone concentrations were determined through RIA. One month later, 4 of the HPD-OVX ewes previously implanted with steroids were reinfused with GnRH and the implantation protocol was repeated using blank implants only. In estradiol-primed ewes, progesterone significantly lowered LH secretion after 12 h of implantation and LH secretion remained inhibited while progesterone implants were in place (p less than 0.05). Removing estradiol transiently lowered LH secretion, and this effect was significant only 24 h after estradiol withdrawal (p less than 0.05). These data suggest that progesterone has a direct, estradiol-dependent inhibitory effect on pituitary LH release and that estradiol may sustain pituitary gonadotrope response to GnRH.  相似文献   

12.
The aim of this study was to investigate incompetence for oestradiol-induced LH surges in long-term ovariectomized gilts and male pigs. Gilts (250 days old; n = 36), which had been ovariectomized 30 (OVX 30) or 100 days (OVX 100) before the start of treatment, were challenged i.m. with oestradiol benzoate and were either given no further treatment, fed methallibure to inhibit endogenous GnRH release or fed methallibure and given i.v. pulses of 100 or 200 ng GnRH agonist at 1 h intervals during the LH surge (48-96 h after oestradiol benzoate). The same treatments were applied to long-term orchidectomized male pigs (ORC, n = 23). In addition, one ORC group was not injected with oestradiol benzoate but was fed methallibure and given pulses of 200 ng GnRH agonist. Oestradiol benzoate alone induced an LH surge in the OVX 30 group only (5/6 gilts), methallibure suppressed (P < 0.05) oestradiol benzoate-induced LH secretion, while pulses of 100 ng GnRH agonist in animals fed methallibure produced LH surges in four of six OVX 30 and four of six OVX 100 gilts. The induced LH surges were similar to those produced by oestradiol benzoate alone in OVX 30 gilts. Pulses of 200 ng GnRH agonist produced LH surges in OVX 30 (6/6) and OVX 100 (6/6) gilts and increased the magnitude of the induced LH surge in OVX 100 gilts (P < 0.05 compared with 100 ng GnRH agonist or OVX 30 control). Pulses of 200 ng GnRH agonist also induced LH surge release in ORC male pigs (5/6), but were unable to increase LH concentrations in a surge-like manner in ORC animals that had not been given oestradiol benzoate, indicating that oestradiol increases pituitary responsiveness to GnRH. These results support the hypothesis that oestradiol must inhibit secretion of LH before an LH surge can occur. It is concluded that incompetence for oestradiol-induced LH surges in long-term ovarian secretion-deprived gilts and in male pigs is due to the failure of oestradiol to promote a sufficient increase in the release of GnRH.  相似文献   

13.
The aim of this experiment with ram and ewe lambs was to test the hypothesis that there are consistent individual differences in Luteinising Hormone (LH) response to Gonadotrophin Releasing Hormone (GnRH).Pre-puberal Border-Leicester × Merino lambs (15 of each sex) aged 9 weeks were challenged with either 0, 30 or 60 μg synthetic GnRH each month for 7 months (December to June). The lambs were then rested from this monthly routine until they were challenged an eighth time in September at 48 weeks of age. Luteinising Hormone response (area under LH release curve) was measured each month and the repeatability of individual LH responses calculated.There was a significant interaction (P < 0.01) between treatment month and sex reflecting a fall in LH response by ram lambs after a peak in February, while at the same time responses by ewe lambs increased to peak again in May. LH response also increased with GnRH dose (30 vs. 60 μg; P < 0.05).Responses by individual lambs were ranked 1 to 5 each month within sex and GnRH doses (30 and 60 μg only). Highest ranked lambs had LH responses 1.4 to 7.0 times larger than lowest ranked lambs. Repeatability of rank between months was poor in all groups except ewe lambs given 60 μg GnRH, where three of the five lambs repeated a particular rank at 5 of the 8 sample months. However, the repeatability of response in this group was not considered to be sufficient to reject the null hypothesis. It was concluded that if consistent individual differences do exist they may be subtle and easily masked by factors such as GnRH dose, sex, age and season.  相似文献   

14.
Plasma LH concentrations were monitored in 6 Hereford X Friesian suckled cows at about 80 days post partum, before and during a 14-day period of continuous s.c. infusion of GnRH (20 micrograms/h). Blood samples were collected at 10-min intervals on Days -2, -1, 1, 2, 3, 4, 7, 10, 13 and 14 (Day 1 = start of infusion). Plasma LH concentrations rose from mean pretreatment levels of 1.3 +/- 0.20 ng/ml to a maximum of 17.1 +/- 3.09 ng/ml within the first 8 h of GnRH infusion, but returned to pretreatment levels by Day 2 or 3. In 4/6 animals, the initial increase was of a magnitude characteristic of the preovulatory LH surge. In all animals, an i.v. injection of 10 micrograms GnRH, given before the start and again on the 14th day of continuous infusion, induced an increase in LH concentrations but the increase to the second injection was significantly (P less than 0.01) less (mean max. conc. 6.4 +/- 0.76 and 2.3 +/- 0.19 ng/ml). Mean LH concentrations (1.0 +/- 0.08, 1.1 +/- 0.08 and 0.9 +/- 0.06 ng/ml) and LH episode frequencies (3.3,4.3 and 3.2 episodes/6 h) did not differ significantly on Days -2,7 and 13. However, the mean amplitude of LH episodes was significantly lower (P less than 0.05) on Day 13 (1.3 +/- 0.10 ng/ml) than on Day -2 (1.8 +/- 0.16 ng/ml). Therefore, although the elevation in plasma LH concentrations that occurs in response to continuous administration of GnRH is short-lived and LH levels return to pre-infusion values within 48 h of the start of infusion, these results show that the pituitary is still capable of responding to exogenous GnRH, although the LH response to an i.v. bolus injection of GnRH is reduced. In addition, this change in pituitary sensitivity is not fully reflected in endogenous patterns of episodic LH secretion.  相似文献   

15.
Normal gonadotrophin secretion, and therefore normal ovarian function, depend on delivery to the pituitary of the hypothalamic neuropeptide gonadotrophin releasing hormone (GnRH) in a pulsatile pattern. In the mid-follicular phase of the menstrual cycle, for example, discrete pulses of luteinizing hormone (LH) can be observed at approximately 90 min intervals. Many disorders of ovulation are caused by abnormalities of this natural pulsed signal. We have developed and used a small portable infusion pump to deliver GnRH to women with hypothalamic amenorrhoea; our studies, and those of other groups, have shown that successful ovulation and pregnancy result from such treatment. The results of treatment at St Mary's Hospital show that 16 women with hypogonadotrophic amenorrhoea received a total of 31 cycles of treatment with pulsatile GnRH; 25 (81%) of these cycles were ovulatory and 11 of the 14 women who were trying to conceive became pregnant. There was only one multiple pregnancy (twins).  相似文献   

16.
17.
Studies were undertaken to determine if changes in the amplitude of luteinizing hormone (LH) pulses that occur in response to changes in the frequency of gonadotropin-releasing hormone (GnRH) pulses are due to an alteration in the number of GnRH receptors. Ewes were ovariectomized (OVX) and the hypothalamus was disconnected from the pituitary (HPD). Ewes were then given pulses of GnRH at a frequency of 1/h or 1/3 h. Two control groups were included: OVX ewes not subjected to HPD, and HPD ewes that were not OVX. At the end of one week of treatment, blood samples were collected to determine the amplitude of LH pulses. The treated ewes were killed just before the next scheduled pulse of GnRH, and the content of LH and number of GnRH receptors were measured in each pituitary. The amplitude of LH pulses was highly correlated with the amount of LH in the pituitary gland (r = 0.71, p less than 0.01), and both LH content and pulse amplitude (mean + SEM) were higher in ewes receiving GnRH once per 3 h (189.7 +/- 39.3 microgram/pituitary, 10.3 +/- 1.1 ng/ml, respectively) than in ewes receiving GnRH once per h (77.8 +/- 11.4 microgram/pituitary, 5.2 +/- 1.3 ng/ml). The pituitary content of LH was highest in the OVX ewes (260.2 +/- 57.4 micrograms/pituitary) and lowest in the nonpulsed HPD ewes (61.7 +/- 51.2 micrograms/pituitary). The number of GnRH receptors was similar in all groups, and was not correlated with any other variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of GnRH pulse amplitude, frequency, and treatment duration on pituitary alpha and LH beta subunit mRNA concentrations were examined in castrate-testosterone replaced male rats. Experimental groups received iv GnRH pulses (5, 25, or 125 ng) at 7.5-, 30-, or 120-min intervals for 8, 24, or 48 h. Saline pulses were given to control rats. Acute LH secretion was measured in blood drawn before and 20 min after the last GnRH pulse. In saline controls, alpha and LH beta mRNAs (150 +/- 14, 23 +/- 2 pg cDNA bound/100 micrograms pituitary DNA) fell to 129 +/- 14 and 18 +/- 2, respectively, after 48 h. In animals receiving GnRH pulses (7.5-min intervals), the 125-ng dose stimulated a slight increase (P less than 0.01) in alpha mRNA levels after 8 and 24 h and both LH subunit mRNAs were increased by the 25- and 125-ng doses after 48 h. The 30-min pulse interval injections (25- and 125-ng doses) increased LH beta mRNA levels after 8 h, but alpha mRNAs were not elevated until after 24 h. Maximum (3-fold) increases in alpha and LH beta mRNAs were seen in rats receiving 25-ng pulses every 30 min for 48 h. Using 120-min pulses, LH subunit mRNAs were not increased by any GnRH dose through 48 h. Acute LH release was not seen in rats receiving 5 ng GnRH pulses at any pulse interval.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Mammalian gonadotropin-releasing hormone (GnRH) I is the neuropeptide that regulates reproduction. In recent years, a second isoform of GnRH, GnRH II, and its highly selective type II GnRH receptor were cloned and identified in monkey brain, but its physiological function remains unknown. We sought to determine whether GnRH II stimulates LH and FSH secretion by activating specific receptors in primary pituitary cultures from male monkeys. Dispersed pituitary cells were maintained in steroid-depleted media and stimulated with GnRH I and/or GnRH II for 6 h. Cells were also treated with Antide (Bachem, King of Prussia, PA), a GnRH I antagonist, to block gonadotropin secretion. In monkey as well as rat pituitary cultures, GnRH II was a less effective stimulator of LH and FSH secretion than was GnRH I. In both cell preparations, Antide completely blocked LH and FSH release provoked by GnRH II as well as GnRH I. Furthermore, the combination of GnRH I and GnRH II was no more effective than either agonist alone. These results indicate that GnRH II stimulates FSH and LH secretion, but they also imply that this action occurs through the GnRH I receptor. The GnRH II receptors may have a unique function in the monkey brain and pituitary other than regulation of gonadotropin secretion.  相似文献   

20.
The gonadotrope cells of the ovine anterior pituitary were insulated from hypothalamic inputs by imposing an immunologic barrier generated by active immunization of ovariectomized ewes against gonadotropin-releasing hormone (GnRH) conjugated to keyhole limpet hemocyanin (KLH) through a p-aminophenylacetic acid bridge. All GnRH-KLH animals immunized developed titers of anti-GnRH that exceeded 1:5000. The antisera were specific for GnRH and cross-reacted with GnRH agonists modified in position 10 to an extent that was less than 0.01%. Ewes actively immunized against GnRH-KLH displayed levels of basal and GnRH agonist-induced gonadotropin secretion that were markedly lower (p less than 0.05) than comparable parameters in ewes actively immunized against KLH. In contrast, basal and thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) secretion were not compromised by active immunization. Immunization against the GnRH-KLH conjugate, but not KLH alone, prevented expression of the positive feedback response to exogenous estradiol (E2). Pituitary stores of immunoactive luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were significantly (p less than 0.001) reduced in ewes immunized against GnRH-KLH but stores of PRL were not affected by such immunization. Further, the biopotency of the residual LH stores in tissue of animals from the anti-GnRH group was significantly (p less than 0.05) lower than LH biopotency in anti-KLH animals. Serum levels of LH in anti-GnRH ewes were restored by circhoral administration of a GnRH agonist that did not cross-react with the antisera generated. Pulsatile delivery of GnRH agonist in anti-GnRH ewes significantly (p less than 0.05) elevated serum LH within 48 h and reestablished LH levels comparable to anti-KLH ewes within 6 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号