首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general feature of all aging populations is the progressively impaired ability to adapt to changes in the surrounding environment. Biochemical expressions of adaptive response include modifications in the rates of enzyme synthesis and degradation, as well as alterations in physiological activity. Therefore, the effects of aging on enzyme adaptation were surveyed in an attempt to explore fundamental biochemical mechanisms in the deterioration of responsiveness. The ability to stimulate adaptive increases in the activity of a large number of enzymes is impared during aging in a variety of tissues from several different species. The impaired capability for liver enzyme adaptation in a rigorously controlled colony of aging male Sprague-Dawley rats probably reflects alterations in hormonal control mechanisms. The present article reviews and evaluates our interest in understanding the effects of aging on regulation of liver enzyme activity by the hormones, insulin and corticosterone. Specific areas currently under investigation include: (1) the regulation of their concentrations in blood; (2) the integrity of their receptor systems in liver; and (3) effectiveness of the endogenous hormone pools fromthe viewpoints fothe availability of physiological antagonists and the potential for alterations in molecular structure.  相似文献   

2.
Glucagon-like peptide-1 (GLP-1) receptor knockout (Glp1r(-/-)) mice exhibit impaired hepatic insulin action. High fat (HF)-fed Glp1r(-/-) mice exhibit improved, rather than the expected impaired, hepatic insulin action. This is due to decreased lipogenic gene expression and triglyceride accumulation. The present studies overcome these secondary adaptations by acutely modulating GLP-1R action in HF-fed wild-type mice. The central GLP-1R was targeted given its role as a regulator of hepatic insulin action. We hypothesized that acute inhibition of the central GLP-1R impairs hepatic insulin action beyond the effects of HF feeding. We further hypothesized that activation of the central GLP-1R improves hepatic insulin action in HF-fed mice. Insulin action was assessed in conscious, unrestrained mice using the hyperinsulinemic euglycemic clamp. Mice received intracerebroventricular (icv) infusions of artificial cerebrospinal fluid, GLP-1, or the GLP-1R antagonist exendin-9 (Ex-9) during the clamp. Intracerebroventricular Ex-9 impaired the suppression of hepatic glucose production by insulin, whereas icv GLP-1 improved it. Neither treatment affected tissue glucose uptake. Intracerebroventricular GLP-1 enhanced activation of hepatic Akt and suppressed hypothalamic AMP-activated protein kinase. Central GLP-1R activation resulted in lower hepatic triglyceride levels but did not affect muscle, white adipose tissue, or plasma triglyceride levels during hyperinsulinemia. In response to oral but not intravenous glucose challenges, activation of the central GLP-1R improved glucose tolerance. This was associated with higher insulin levels. Inhibition of the central GLP-1R had no effect on oral or intravenous glucose tolerance. These results show that inhibition of the central GLP-1R deteriorates hepatic insulin action in HF-fed mice but does not affect whole body glucose homeostasis. Contrasting this, activation of the central GLP-1R improves glucose homeostasis in HF-fed mice by increasing insulin levels and enhancing hepatic insulin action.  相似文献   

3.
Oxidative stress is involved in aging and age-related diseases. Several metabolic alterations similar to those encountered with aging and age-related diseases have been observed in response to hyperinsulinemia. Surprisingly, this metabolic derangement diminished hepatic peroxisomal beta-oxidation which is a major source of H2O2 production in the liver, suggesting a protective effect against oxidative stress. However, the impact of hyperinsulinemia on the balance between H2O2 production and elimination in the liver is not known. Consequently, this study was undertaken to evaluate the effect of sustained high serum insulin levels on the activity of hepatic catalase, a peroxisomal antioxidant enzyme involved in the decomposition of H2O2. Male Sprague-Dawley rats received intravenous infusion of either 30% glucose, 30% galactose or normal saline for seven days. Activity of hepatic peroxisomal beta-oxidation and catalase decreased 58% and 74%, respectively, in glucose-infused rats compared with galactose- or saline-infused animals. When infused simultaneously with glucose, diazoxide blocked glucose-enhanced insulin secretion and prevented the decrease in peroxisomal enzyme activities, without altering blood glucose concentration. Neither diazoxide alone nor galactose, which did not alter serum insulin levels, had any effect on enzyme activities. These results suggest that hyperinsulinemia is responsible for the decreased enzyme activities observed in glucose-infused rats. Indeed, a strong negative correlation between serum insulin levels and hepatic peroxisomal enzyme activities was found. To investigate the mechanism by which insulin modulates catalase activity, we studied rates of synthesis and degradation of catalase in saline- and glucose-infused rats. Data show that insulin diminishes rates of catalase synthesis, while exhibiting no effect on its degradation. Upsetting the balance between the cellular capacity to produce and eliminate H2O2 may be a contributing factor to the known deleterious effects of hyperinsulinemia.  相似文献   

4.
Daytime restricted feeding (DRF) promotes circadian adaptations in the metabolic processing of nutrients. We explored the hepatic gluconeogenic response in DRF rats by the temporal profiles of the following: (1) the activity of glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), as well as the periportal and pericentral distribution of PEPCK; (2) conversion of alanine to glucose; (3) glycemia and liver glycogen content; (4) presence of glycogen synthase (GYS) and its phosphorylated form (at Ser641, pGYS); (5) circulating levels of corticosterone, glucagon and insulin; (6) glucose-tolerance test; and (7) sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α). The results showed that DRF promoted: (1) a phase shift in G6Pase activity and an increase in PEPCK activity as well as a change of PEPCK from periportal to pericentral hepatocytes, (2) a net conversion of alanine to circulating glucose, (3) a decrease in glycemic values and a phase shift in the liver glycogen content, (4) a phase shift in GYS and an increase of pGYS, (5) an increase in the daily levels of corticosterone and glucagon, but a reduction in the levels of insulin, (6) normal glucose homeostasis in all groups and (7) an enhanced presence of SIRT1 and PGC-1α. It is proposed that the increased gluconeogenic in DRF group promotes synthesis of hepatic glycogen and the production of glucose. These results could be a modulation of the gluconeogenic process due to rheostatic adaptations in the endocrine, metabolic and timing regulation of liver and could be associated with the physiology of the food entrained oscillator.  相似文献   

5.
Hepatic glucose and lipid metabolism are altered in metabolic disease (e.g. obesity, metabolic syndrome, and Type 2 diabetes). Insulin-dependent regulation of glucose metabolism is impaired. In contrast, lipogenesis, hypertriglyceridemia, and hepatic steatosis are increased. Because insulin promotes lipogenesis and liver fat accumulation, to explain the elevation in plasma and tissue lipids, investigators have suggested the presence of pathway-selective insulin resistance. In this model, insulin signaling to glucose metabolism is impaired, but insulin signaling to lipid metabolism is intact. We discuss the evidence for the differential regulation of hepatic lipid and glucose metabolism. We suggest that the primary phenotypic driver is altered substrate delivery to the liver, as well as the repartitioning of hepatic nutrient handling. Specific alterations in insulin signaling serve to amplify the alterations in hepatic substrate metabolism. Thus, hyperinsulinemia and its resultant increased signaling may facilitate lipogenesis, but are not the major drivers of the phenotype of pathway-selective insulin resistance.  相似文献   

6.
alpha2-HS glycoprotein (AHSG), also known as fetuin-A, inhibits insulin receptor autophosphorylation and tyrosine kinase activity in vitro and in vivo. Earlier we have shown that fetuin-null (KO) mice demonstrate improved insulin sensitivity and resistance to diet-induced obesity. Since aging is associated with insulin resistance and impaired glucose handling, we tested the hypothesis that fetuin-null (KO) mice are resilient to changes in insulin sensitivity associated with aging. Aged (80-week-old) fetuin-null mice were leaner and demonstrated significantly lower body weights compared to age- and sex-matched wild-type (WT) littermates. Leanness in aged fetuin KO mice was accompanied by a significant increase in dark-onset energy expenditure, without marked alteration of respiratory quotient. In comparison to WT mice, fetuin KO mice demonstrated a lower fasting insulin resistance index, and significantly lower blood glucose and insulin levels, following a 4h fast. Interestingly, despite significantly decreased insulin levels during a glucose tolerance test, aged fetuin-null mice demonstrated a similar glucose excursion as WT mice, indicative of improved insulin sensitivity. Analysis of aldehyde-fuchsin stained pancreas from aged fetuin KO mice indicated no difference in islet beta-cell size or number. An insulin tolerance test confirmed the increased insulin sensitivity of aged fetuin KO mice. Further, compared to WT mice, aged fetuin-null mice demonstrated increased skeletal muscle and liver IR autophosphorylation and TK activity. Taken together, this study suggests that the absence of fetuin may contribute to the improvement of insulin sensitivity associated with aging.  相似文献   

7.
8.
The hexosamine biosynthesis pathway (HBP) regulates the post-translational modification of nuclear and cytoplasmic protein by O-linked N-acetylglucosamine (O-GlcNAc). Numerous studies have demonstrated increased flux through this pathway contributes to the development of β-cell dysfunction. The effect of decreased O-GlcNAc on the maintenance of normal β-cell function, however, is not well understood. We studied transgenic mice that over express β-N-acetylglucosaminidase (O-GlcNAcase), an enzyme that catalyzes the removal of O-GlcNAc from proteins, in the pancreatic β-cell under control of the rat insulin promoter. 3-4-Month-old O-GlcNAcase transgenic mice have higher glucose excursions with a concomitant decrease in circulating insulin levels, insulin mRNA levels, and total islet insulin content. In older (8-9-month-old) O-GlcNAcase transgenic mice glucose tolerance is no longer impaired. This is associated with increased serum insulin, islet insulin content, and insulin mRNA in the O-GlcNAcase transgenic mice. These improvements in β-cell function with aging are associated with increased angiogenesis and increased VEGF expression, with parallel increases in activation of Akt and expression of PGC1α. The biphasic effects as a function of age are consistent with published observations of mice with increased O-GlcNAc in islets and demonstrate that O-GlcNAc signaling exerts multiple effects on both insulin secretion and islet survival.  相似文献   

9.
Maturity-onset obesity and elevated circulating insulin levels are characteristic of some, but not all, mice bearing the viable yellow mutation (Avy) at the agouti locus. The expression of the Avy/a genotype in individual mice, which become obese and which remain lean is determined during prenatal development by as yet unidentified conditions in the dam's reproductive tract. One Avy/a phenotype is identified by a mottled yellow coat and characterized by adult obesity, elevated circulating insulin levels, and impaired glucose tolerance. These mice are notably more susceptible to hyperplasia and neoplasia. The alternative Avy/ a phenotype has a pseudoagouti coat, remains lean, is normoinsulinemic and normoglycemic, and in numerous other characteristics resembles congeneic lean black (a/a) littermates. Obese mottled yellow and lean pseudoagouti Avy/a mice differ in capacity to support the growth of ascites cells, in the growth response to castration, and in hepatic glutathione S-transferase activity, erythrocyte fragility, immune function, and susceptibility to Plasmodium yoelii pathogenesis. Our working hypothesis is that the constellation of characteristics, except coat color pattern, which differentiate the obese yellow mice from their lean littermates, is largely a consequence of the elevated circulating insulin levels that induce increased lipogenesis and decreased lipolysis, increased DNA and protein synthesis, increased mitosis in sensitive tissues, and increased proliferation of transformed cells.  相似文献   

10.
Both aging and physical inactivity are associated with increased development of insulin resistance whereas physical activity has been shown to promote increased insulin sensitivity. Here we investigated the effects of physical activity level on aging-associated insulin resistance in myotubes derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs) normally active or middle-aged (56.6 yrs) individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact on the metabolism of human myotubes during aging and may contribute to aging-associated insulin resistance through impaired GLUT4 localization.  相似文献   

11.
While age‐related insulin resistance and hyperinsulinemia are usually considered to be secondary to changes in muscle, the liver also plays a key role in whole‐body insulin handling and its role in age‐related changes in insulin homeostasis is largely unknown. Here, we show that patent pores called ‘fenestrations’ are essential for insulin transfer across the liver sinusoidal endothelium and that age‐related loss of fenestrations causes an impaired insulin clearance and hyperinsulinemia, induces hepatic insulin resistance, impairs hepatic insulin signaling, and deranges glucose homeostasis. To further define the role of fenestrations in hepatic insulin signaling without any of the long‐term adaptive responses that occur with aging, we induced acute defenestration using poloxamer 407 (P407), and this replicated many of the age‐related changes in hepatic glucose and insulin handling. Loss of fenestrations in the liver sinusoidal endothelium is a hallmark of aging that has previously been shown to cause deficits in hepatic drug and lipoprotein metabolism and now insulin. Liver defenestration thus provides a new mechanism that potentially contributes to age‐related insulin resistance.  相似文献   

12.
Beta- and alpha-cell dysfunction in type 2 diabetes.   总被引:3,自引:0,他引:3  
Insulin resistance is a common pathogenetic feature of type 2 diabetes. However, hyperglycemia would not develop if a concomitant defect in insulin secretion were not present. Impaired insulin secretion results from functional and survival defects of the beta-cell. The functional defects can be demonstrated early in the natural history of diabetes and they are hallmarked by abnormal pulsatility of basal insulin secretion and loss of first-phase insulin release in response to a glucose challenge. Moreover, a significant reduction of the beta-cell mass is apparent at the time of the diagnosis of diabetes. The progressive increase in glucose levels, that seems to characterize the natural history of type 2 diabetes, has been claimed to be largely due to progressive reduction of function and mass of beta-cells. Although a genetic predisposition is likely to account for impaired insulin secretion, chronic exposure to hyperglycemia and high circulating FFA is likely to contribute to both functional and survival defects. The disturbance in the endocrine activity of the pancreas is not limited to insulin, since a concomitant increase in fasting plasma glucagon and impaired suppression after the ingestion of an oral glucose load are often observed. This alteration becomes prominent after the ingestion of a mixed meal, when plasma glucagon remains much higher in the diabetic patient as compared to normal individuals. The disproportionate changes in the plasma concentration of the two pancreatic hormones is clearly evident when the insulin:glucagon molar ratio is considered. It is the latter that mainly affects hepatic glucose production. Because of the reduction of the insulin:glucagon molar ratio basal endogenous glucose concentration will be higher causing fasting hyperglycemia, while the hepatic glucose output will not be efficiently suppressed after the ingestion of a meal, contributing to excessive post-prandial glucose rise. Correcting beta- and alpha-cell dysfunction becomes, therefore, an attractive and rational therapeutic approach, particularly in the light of new treatments that may directly act on these pathogenetic mechanisms of type 2 diabetes.  相似文献   

13.
The role for melatonin in glucose homeostasis and insulin resistance is not very clear and has recently been an active area of investigation. The present study investigated the role of melatonin in seasonal accumulation of adipose tissue in Scotophilus heathi, with particular reference to its role in glucose homeostasis and development of insulin resistance. The circulating melatonin levels correlated positively (p < 0.05) with the changes in body mass due to fat accumulation and circulating insulin level, but correlated negatively with the blood glucose level in S. heathi. The bats showed high circulating blood glucose levels and impaired glucose tolerance during the period of fat deposition suggesting insulin resistance condition which improves after winter when most of the fat has been utilized as a metabolic fuel. The high circulating melatonin levels during the period of maximum body fat at the beginning of winter prepare the bats for winter dormancy by modulating the glucose homeostasis through affecting blood glucose levels, muscle and liver glycogen stores, insulin receptor and glucose transporter 4 (GLUT 4) expression. This is also confirmed by in vivo study in which melatonin injection improves the glucose tolerance, increases muscle insulin receptor and GLUT 4 expression, and enhances glucose clearance from the blood. The results of present study further showed that the effect of melatonin injection on the blood glucose levels is determined by the metabolic state of the bats and may protect from decrease in blood glucose level during extreme starvation, however, melatonin when injected during fed state increases glucose clearance from the blood. In summary, the present study suggested that melatonin interferes with the glucose homeostasis through modulating intracellular glucose transport and may protect bats from hypoglycemia during winter dormancy.  相似文献   

14.
In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic b cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.  相似文献   

15.
16.
The adipose tissue-derived hormone adiponectin improves insulin sensitivity and its circulating levels are decreased in obesity-induced insulin resistance. Here, we report the generation of a mouse line with a genomic disruption of the adiponectin locus. We aimed to identify whether these mice develop insulin resistance and which are the primary target tissues affected in this model. Using euglycemic/insulin clamp studies, we demonstrate that these mice display severe hepatic but not peripheral insulin resistance. Furthermore, we wanted to test whether the lack of adiponectin magnifies the impairments of glucose homeostasis in the context of a dietary challenge. When exposed to high fat diet, adiponectin null mice rapidly develop glucose intolerance. Specific PPARgamma agonists such as thiazolidinediones (TZDs) improve insulin sensitivity by mechanisms largely unknown. Circulating adiponectin levels are significantly up-regulated in vivo upon activation of PPARgamma. Both TZDs and adiponectin have been shown to activate AMP-activated protein kinase (AMPK) in the same target tissues. We wanted to address whether the ability of TZDs to improve glucose tolerance is dependent on adiponectin and whether this improvement involved AMPK activation. We demonstrate that the ability of PPARgamma agonists to improve glucose tolerance in ob/ob mice lacking adiponectin is diminished. Adiponectin is required for the activation of AMPK upon TZD administration in both liver and muscle. In summary, adiponectin is an important contributor to PPARgamma-mediated improvements in glucose tolerance through mechanisms that involve the activation of the AMPK pathway.  相似文献   

17.
Growth hormone (GH) inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD) was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre) with inducible diphtheria toxin receptor mice (iDTR) and treating adult Cre(+/-),iDTR(+/-) offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre(-/-),iDTR(+/-) mice were used as GH-intact controls. AOiGHD improved whole body insulin sensitivity in both low-fat and high-fat fed mice. Consistent with improved insulin sensitivity, indirect calorimetry revealed AOiGHD mice preferentially utilized carbohydrates for energy metabolism, as compared to GH-intact controls. In high-fat, but not low-fat fed AOiGHD mice, fat mass increased, hepatic lipids decreased and glucose clearance and insulin output were impaired. These results suggest the age-related decline in GH helps to preserve systemic insulin sensitivity, and in the context of moderate caloric intake, prevents the deterioration in metabolic function. However, in the context of excess caloric intake, low GH leads to impaired insulin output, and thereby could contribute to the development of diabetes.  相似文献   

18.
Longitudinal effects of a very low–carbohydrate (VLC) and a calorie‐matched high‐carbohydrate (HC) weight reduction diet were compared in dietary obese Sprague–Dawley rats exhibiting impaired glucose tolerance and insulin resistance. Obese rats were divided into weight‐matched groups: (i) VLC rats consumed an energy‐restricted 5% carbohydrate, 60% fat diet for 8 weeks, (ii) HC rats consumed an isocaloric 60% carbohydrate, 15% fat diet, and (iii) HF rats consumed a high‐fat diet ad libitum. HC and VLC rats showed similar reductions in body fat and hepatic lipid at the midpoint of the weight‐reduction program, indicating effects due to energy deficit. At the end point, however, HC rats showed greater reductions in total and percent body fat, hepatic lipid and intramuscular lipid than did VLC rats, suggesting that diet composition induced changes in the relative efficiencies of the HC and VLC diets over time. HC rats showed marked improvement in glucose tolerance at the midpoint and end point, whereas VLC rats showed no improvement. Impaired glucose tolerance in VLC rats at the end point was due to insulin resistance and an attenuated insulin secretory response. Glucose tolerance in energy‐restricted rats correlated negatively with hepatic and intramuscular lipid levels, but not visceral or total fat mass. These findings demonstrate that adaptations to diet composition eventually enabled HC rats to lose more body fat than VLC rats even though energy intakes were equal, and suggest that the elevated levels of hepatic and intramuscular lipid associated with VLC diets might predispose to insulin resistance and impaired glucose tolerance despite weight loss.  相似文献   

19.
Recent studies have implicated endoplasmic reticulum (ER) stress in insulin resistance associated with caloric excess. In mice placed on a 3-day high fat diet, we find augmented eIF2α signaling, together with hepatic lipid accumulation and insulin resistance. To clarify the role of the liver ER stress-dependent phospho-eIF2α (eIF2α-P) pathway in response to acute caloric excess on liver and muscle glucose and lipid metabolism, we studied transgenic mice in which the hepatic ER stress-dependent eIF2α-P pathway was inhibited by overexpressing a constitutively active C-terminal fragment of GADD34/PPP1R15a, a regulatory subunit of phosphatase that terminates ER stress signaling by phospho-eIF2α. Inhibition of the eIF2α-P signaling in liver led to a decrease in hepatic glucose production in the basal and clamped state, which could be attributed to reduced gluconeogenic gene expression, resulting in reduced basal plasma glucose concentrations. Surprisingly, hepatic eIF2α inhibition also impaired insulin-stimulated muscle and adipose tissue insulin sensitivity. This latter effect could be attributed at least in part by an increase in circulating IGFBP-3 levels in the transgenic animals. In addition, infusion of insulin during a hyperinsulinemic-euglycemic clamp induced conspicuous ER stress in the 3-day high fat diet-fed mice, which was aggravated through continuous dephosphorylation of eIF2α. Together, these data imply that the hepatic ER stress eIF2α signaling pathway affects hepatic glucose production without altering hepatic insulin sensitivity. Moreover, hepatic ER stress-dependent eIF2α-P signaling is implicated in an unanticipated cross-talk between the liver and peripheral organs to influence insulin sensitivity, probably via IGFBP-3. Finally, eIF2α is crucial for proper resolution of insulin-induced ER stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号