首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed a detailed study of methanol-induced conformational transitions of horse heart apomyoglobin (apoMb) to investigate the existence of the compact and expanded denatured states. A combination of far- and near-ultraviolet circular dichroism, NMR spectroscopy, and small-angle X-ray scattering (SAXS) was used, allowing a phase diagram to be constructed as a function of pH and the methanol concentration. The phase diagram contains four conformational states, the native (N), acid-denatured (U(A)), compact denatured (I(M)), and expanded helical denatured (H) states, and indicates that the compact denatured state (I(M)) is stable under relatively mild denaturing conditions, whereas the expanded denatured states (U(A) and H) are realized under extreme conditions of pH (strong electric repulsion) or alcohol concentration (weak hydrophobic interaction). The results of this study, together with many previous studies in the literature, indicate the general existence of the compact denatured states not only in the salt-pH plane but also in the alcohol-pH plane. Furthermore, to determine the general feature of the H conformation we used several proteins including ubiquitin, ribonuclease A, alpha-lactalbumin, beta-lactoglobulin, and Streptomyces subtilisin inhibitor (SSI) in addition to apoMb. SAXS studies of these proteins in 60% methanol showed that the H states of these all proteins have expanded and nonglobular conformations. The qualitative agreement of the experimental data with computer-simulated Kratky profiles also supports this structural feature of the H state.  相似文献   

2.
A theory of equilibrium denaturation of proteins is suggested. According to this theory, a cornerstone of protein denaturation is disruption of tight packing of side chains in protein core. Investigation of this disruption is the object of this paper. It is shown that this disruption is an "all-or-none" transition (independent of how compact is the denatured state of a protein and independent of the protein-solvent interactions) because expansion of a globule must exceed some threshold to release rotational isomerization of side chains. Smaller expansion cannot produce entropy compensation of nonbonded energy loss; this is the origin of a free-energy barrier (transition state) between the native and denatured states. The density of the transition state is so high that the solvent cannot penetrate into protein in this state. The results obtained in this paper make it possible to present in the following paper a general phase diagram of protein molecule in solution.  相似文献   

3.
Thermodynamic study of the apomyoglobin structure   总被引:18,自引:0,他引:18  
Sperm whale apomyoglobin has been studied thermodynamically in solutions with different pH and temperature by scanning microcalorimetry, viscosimetry, nuclear magnetic resonance and circular dichroism spectrometry, and by electrometric and calorimetric titration. It has been shown that apomyoglobin in solutions with pH close to neutral has a compact and unique spatial structure with an extended hydrophobic core. This structure is maximally stable at about 30 degrees C and breaks down reversibly both upon heating or cooling from this temperature. The process of breakdown of this structure is highly co-operative and can be regarded as a transition between two macroscopic states of protein, the native and denatured states. In contrast to the native state, which is specified by definite values of compactness and ellipticity, the compactness and ellipticity of the denatured state of apomyoglobin depend strongly on pH; with a decrease of pH below 4.0, these parameters gradually approach the values of the random coil.  相似文献   

4.
The denatured states of alpha-lactalbumin, which have features of a molten globule state, have been studied to elucidate the energetics of the molten globule state and its contribution to the stability of the native conformation. Analysis of calorimetric and CD data shows that the heat capacity increment of alpha-lactalbumin denaturation highly correlates with the degree of disorder of the residual structure of the state. As a result, the denaturational transition of alpha-lactalbumin from the native to a highly ordered compact denatured state, and from the native to the disordered unfolded state are described by different thermodynamic functions. The enthalpy and entropy of the denaturation of alpha-lactalbumin to compact denatured state are always greater than the enthalpy and entropy of its unfolding. This difference represents the unfolding of the molten globule state. Calorimetric measurements of the heat effect associated with the unfolding of the molten globule state reveal that it is negative in sign over the temperature range of molten globule stability. This observation demonstrates the energetic specificity of the molten globule state, which, in contrast to a protein with unique tertiary structure, is stabilized by the dominance of negative entropy and enthalpy of hydration over the positive conformational entropy and enthalpy of internal interactions. It is concluded that at physiological temperatures the entropy of dehydration is the dominant factor providing stability for the compact intermediate state on the folding pathway, while for the stability of the native state, the conformational enthalpy is the dominant factor.  相似文献   

5.
E James  P G Wu  W Stites  L Brand 《Biochemistry》1992,31(42):10217-10225
The protein from a mutant clone of staphylococcal nuclease with a cysteine substituting for a lysine at position 78 was prepared and labeled with a cysteine-specific fluorescent probe 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonic acid (IAEDANS). Time-resolved nonradiative energy-transfer studies were done using the single tryptophan at position 140 as the energy donor and the IAEDANS as the receptor. Changes in distance and distance distributions were observed as a function of increasing guanidinium (GuHCl) concentration (0-2 M) and in the presence or absence of Ca2+ and inhibitor 2'-deoxythymidine 3',5'-diphosphate (pdTp). In the native state, both the ternary complex and the noncomplexed protein are best fit with one population having an average donor-acceptor distance of approximately 23 A and an "apparent" full width at half-maximum (fwhm) of distance distribution of approximately 18 A. Besides the contribution of linker arm of the acceptor, it appears that there are some conformational heterogeneties either due to the disordering of the tryptophan region or due to the whole protein in the native state. During GuHCl unfolding, the average distance remains relatively constant up to GuHCl concentrations where both the ternary complex and the ligand-free protein are denatured (1-1.3 M). The compact denatured states persist up to 2 M GuHCl. At 2 M GuHCl, the heterogeneity of the denatured state in the ternary complex is much larger than that of the ligand-free nuclease. The results show that the denatured states of staphylococcal nuclease mutant K78C by GuHCl are compact and these compact denatured states are likely due to residual structures or incompletely disrupted hydrophobic cores under these conditions.  相似文献   

6.
The temperature trends of the standard thermodynamic functions of the native and denatured protein in solution are considered within the concept of excess mixing functions. It is assumed that some protein molecules adopt an intermediate state between native and denatured forms within the temperature range between cold and thermal denaturation and form metastable microphases as a result of a specific interaction with water. A phase diagram in the temperature–standard entropy coordinate plane representing an isobar family is proposed. Two limiting isobars are characterized by an entropy jump, which reflects the first-order phase transition between the native and denatured states. The isobars in the intermediate temperature range are represented as van der Waals curves, which reflect the equilibrium between the main phase of the molecules in native state and microphases. The difference between the phases disappears at critical points. It is assumed that the supercritical range is a macroscopically homogeneous single phase zone of reduced stability, which is represented by a dynamic system of monomers and oligomers of the native protein, monomers and clusters of the protein with partially unfolded structure. The phase diagram is collated with the elliptic phase diagram in the temperature–osmotic pressure plane.  相似文献   

7.
CI2 folds and unfolds as a single cooperative unit by simple two-state kinetics, which enables the properties of the transition state to be measured from both the forward and backward rate constants. We have examined how the free energy of the transition state for the folding of chymotrypsin inhibitor 2 (CI2) changes with pH and temperature. In addition to the standard thermodynamic quantities, we have measured the overall acid-titration properties of the transition state and its heat capacity relative to both the denatured and native states. We were able to determine the latter by a method analogous to a well-established procedure for measuring the change in heat capacity for equilibrium unfolding: the enthalpy of activation of unfolding at different values of acid pH were plotted against the average temperature of each determination. Our results show that the transition state of CI2 has lost most of the electrostatic and van der Waals' interactions that are found in the native state, but it remains compact and this prevents water molecules from entering some parts of the hydrophobic core. The properties of the transition state of CI2 are then compared with the major folding transition state of the larger protein barnase, which folds by a multi-state mechanism, with the accumulation of a partly structured intermediate (Dphysor I). CI2 folds from a largely unstructured denatured state under physiological conditionsviaa transition state which is compact but relatively uniformly unstructured, with tertiary and secondary structure being formed in parallel. We term this an expanded pathway. Conversely, barnase folds from a largely structured denatured state in which elements of structure are well formed through a transition state that has islands of folded elements of structure. We term this a compact pathway. These two pathways may correspond to the two extreme ends of a continuous spectrum of protein folding mechanisms. Although the properties of the two transition states are very different, the activation barrier for folding (Dphys→3 ) is very similar for both proteins.  相似文献   

8.
Dong Xie  Ernesto Freire 《Proteins》1994,19(4):291-301
The heat-denatured state of proteins has been usually assumed to be a fully hydrated random coil. It is now evident that under certain solvent conditions or after chemical or genetic modifications, the protein molecule may exhibit a hydrophobic core and residual secondary structure after thermal denaturation. This state of the protein has been called the “compact denatured” or “molten globule” state. Recently is has been shown that α-lactalbumin at pH < 5 denatures into a molten globule state upon increasing the temperature (Griko, Y., Freire, E., Privalov, P. L. Biochemistry 33:1889–1899, 1994). This state has a lower heat capacity and a higher enthalpy at low temperatures than the unfolded state. At those temperatures the stabilization of the molten globule state is of an entropic origin since the enthalpy contributes unfavorably to the Gibbs free energy. Since the molten globule is more structured than the unfolded state and, therefore, is expected to have a lower configurational entropy, the net entropic gain must originate primarily from solvent related entropy arising from the hydrophobic effect, and to a lesser extent from protonation or electrostatic effects. In this work, we have examined a large ensemble of partly folded states derived from the native structure of α-lactalbumin in order to identify those states that satisfy the energetic criteria of the molten globule. It was found that only few states satisfied the experimental constraints and that, furthermore, those states were part of the same structural family. In particular, the regions corresponding to the A, B, and C helices were found to be folded, while the β sheet and the D helix were found to be unfolded. At temperatures below 45°C the states exhibiting those structural characteristics are enthalpically higher than the unfolded state in agreement with the experimental data. Interestingly, those states have a heat capacity close to that observed for the acid pH compact denatured state of α-lactalbumin [980 cal (mol.K)?l]. In addition, the folded regions of these states include those residues found to be highly protected by NMR hydrogen exchange experiments. This work represents an initial attempt to model the structural origin of the thermodynamic properties of partly folded states. The results suggest a number of structural features that are consistent with experimental data. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Titration of a salt-free solution of native staphylococcal nuclease by HCl leads to an unfolding transition in the vicinity of pH 4, as determined by near- and far-UV circular dichroism. At pH 2-3, the protein is substantially unfolded. The addition of further HCl results in a second transition, this one to a more structured species (the A state) with the properties of an expanded molten globule, namely substantial secondary structure, little or no tertiary structure, relatively compact size as determined by hydrodynamic radius, and the ability to bind the hydrophobic dye 1-anilino-8-naphthalene sulfonic acid. The addition of anions, in the form of neutral salts, to the acid-unfolded state at pH 2 also causes a transition leading to the A state. Fourier transform infrared analysis of the amide I band was used to compare the amount and type of secondary structure in the native and A states. A significant decrease in alpha-helix structure, with a corresponding increase in beta or extended structure, was observed in the A state, compared to the native state. A model to account for such compact denatured states is proposed.  相似文献   

10.
Several reports have pointed out the existence of intermediate states (both kinetic and equilibrium intermediate) between the native and the denatured states. The molten globule state, a compact intermediate state in which the secondary structure is formed but the tertiary structure fluctuates considerably, is currently being studied intensively because of its possible implication in the folding process of several proteins. We have examined the thermal stability of horse cytochrome c at low pH between 2.0 and 3.2 and different potassium chloride concentrations by absorbance of the Soret band, far and near-ultraviolet circular dichroism (u.v. c.d.) and tryptophan fluorescence using a multidimensional spectrophotometer. The concentration of potassium chloride ranged from 0 M to 0.5 M. The experimental thermal denaturation curves show that: (1) the helical content of cytochrome c remains stable at higher temperature when the concentration of salt is increased; whereas (2) the extent of ordering of the tertiary structure is weakly dependent on salt concentration; and (3) for cytochrome c, the stabilization of the molten globule state is induced by the binding of anions. Other salts such as NaCl, LiCl, potassium ferricyanide (K3Fe(CN)6) and Na2SO4 may also be used to stabilize the molten globule state. The thermodynamic analysis of the denaturation curves of c.d. at 222 nm and c.d. at 282 nm shows that, whereas a two-state (native and denatured) transition is observed at low-salt concentration, the far and near-u.v. c.d. melting curves of cytochrome c do not coincide with each other at high-salt concentration, and a minimum of three different thermodynamic states (IIb, intermediate or IIc, and denatured) is necessary to achieve a sufficient analysis. The intermediate state (called IIc) is attributed to the molten globule state because of its high secondary structure content and the absence of tertiary structure. Therefore, at low pH, cytochrome c is present in at least four states (native, IIb, IIc and denatured) depending on the salt concentration and temperature. The thermodynamic parameters, i.e. the Gibbs free energy differences (delta G), the enthalpy differences (delta H), the midpoint temperatures (Tm) of the transition (IIb in equilibrium intermediate (IIc in equilibrium denatured) are determined. We also give estimates of the heat capacity differences (delta Cp) from the temperature dependence of the enthalpy differences. The enthalpy change and the heat capacity difference of the IIc in equilibrium denatured transition are non-zero. The number of charges (protons or chloride anions) released upon transitions are determined by analysing the pH and chloride anion concentration dependence of the Gibbs free energy.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Sperm whale apomyoglobin structure has been studied thermodynamically at different temperatures and pH of solution by scanning microcalorimetry, viscosimetry, NMR and CD spectrometry techniques. It has been shown that at pH close to neutral, apomyoglobin has a compact highly cooperative structure with a well defined hydrophobic core. The stability of this structure is maximal at 30 degrees C and decreases both with an increase and decrease of temperature. Correspondingly, the compact three-dimensional structure of apomyoglobin is disrupted both upon heating and cooling of the solution. In acidic solutions this process is reversible and represents a cooperative transition between two macroscopic states--the ordered and disordered ones which can be regarded as the native and denatured states of molecule. The compactness and ellipticity of the denatured state depend significantly on pH: upon a decrease of pH in the region of ionization of carboxylic groups these parameters approach the values characteristic of a random coil. A comparison of the maximal stability of the cooperative structure of apomyoglobin which is 12 kJ.mol-1 at 30 degrees C and pH close to neutral ones with the maximal stability of metmyoglobin which is 49 kJ.mol-1 shows that the contribution of heme in the stabilization of the native myoglobin structure reaches 37 kJ.mol-1.  相似文献   

12.
Shimizu S  Chan HS 《Proteins》2002,49(4):560-566
Free energies of pairwise hydrophobic association are simulated in aqueous solutions of urea at concentrations ranging from 0-8 M. Consistent with the expectation that hydrophobic interactions are weakened by urea, the association of relatively large nonpolar solutes is destabilized by urea. However, the association of two small methane-sized nonpolar solutes in water has the opposite tendency of being slightly strengthened by the addition of urea. Such size effects and the dependence of urea-induced stability changes on the configuration of nonpolar solutes are not predicted by solvent accessible surface area approaches based on energetic parameters derived from bulk-phase solubilities of model compounds. Thus, to understand hydrophobic interactions in proteins, it is not sufficient to rely solely on transfer experiment data that effectively characterize a single nonpolar solute in an aqueous environment but not the solvent-mediated interactions among two or more nonpolar solutes. We find that the m-values for the rate of change of two-methane association free energy with respect to urea concentration is a dramatically nonmonotonic function of the spatial separation between the two methanes, with a distance-dependent profile similar to the corresponding two-methane heat capacity of association in pure water. Our results rationalize the persistence of residual hydrophobic contacts in some proteins at high urea concentrations and explain why the heat capacity signature (DeltaC(P)) of a compact denatured state can be similar to DeltaC(P) values calculated by assuming an open random-coil-like unfolded state.  相似文献   

13.
14.
15.
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea‐induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two‐state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m‐value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea‐denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ~40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions.  相似文献   

16.
Sac7d unfolds at low pH in the absence of salt, with the greatest extent of unfolding obtained at pH 2. We have previously shown that the acid unfolded protein is induced to refold by decreasing the pH to 0 or by addition of salt (McCrary BS, Bedell J. Edmondson SP, Shriver JW, 1998, J Mol Biol 276:203-224). Both near-ultraviolet circular dichroism spectra and ANS fluorescence enhancements indicate that the acid- and salt-induced folded states have a native fold and are not molten globular. 1H,15N heteronuclear single quantum coherence NMR spectra confirm that the native, acid-, and salt-induced folded states are essentially identical. The most significant differences in amide 1H and 15N chemical shifts are attributed to hydrogen bonding to titrating carboxyl side chains and through-bond inductive effects. The 1H NMR chemical shifts of protons affected by ring currents in the hydrophobic core of the acid- and salt-induced folded states are identical to those observed in the native. The radius of gyration of the acid-induced folded state at pH 0 is shown to be identical to that of the native state at pH 7 by small angle X-ray scattering. We conclude that acid-induced collapse of Sac7d does not lead to a molten globule but proceeds directly to the native state. The folding of Sac7d as a function of pH and anion concentration is summarized with a phase diagram that is similar to those observed for other proteins that undergo acid-induced folding except that the A-state is encompassed by the native state. These results demonstrate that formation of a molten globule is not a general property of proteins that are refolded by acid.  相似文献   

17.
The stability of the substrate-binding region of human inducible Hsp70 was studied by a combination of spectroscopic and calorimetric methods. Thermal denaturation of the protein involves four accessible states: the native state, two largely populated intermediates, and the denatured state, with transition temperatures of 52.8, 56.2 and 71.2 degrees C, respectively, at pH 6.5. The intermediate spectroscopic properties resemble those of molten globules but they still retain substantial enthalpy and heat capacity of unfolding. Moreover, the similar heat capacities of the first intermediate and the native state suggests that the hydrophobic core of the intermediate would be highly native-like and that its formation would involve an increased disorder in localized portions of the structure rather than formation of a globally disordered state. The structure of the C-terminal of Hsp70 is destabilized as the pH separates from neutrality. The intermediates become populated under heat shock conditions at acidic and basic pHs. Denaturation by guanidine chloride also indicated that the protein undergoes a sequential unfolding process. The free energy change associated to the loss of secondary structure at 20 degrees C (pH 6.5) is 3.1 kcal.mol(-1) at high salt conditions. These values agree with the free energy changes estimated from differential scanning calorimetry for the transition between the second intermediate and the final denatured state.  相似文献   

18.
In order to understand the mechanism of thermal gelation of rubisco, its native and heat denatured states were characterized by absorbance, fluorescence and circular dichroïsm spectroscopies as well as by differential scanning calorimetry in the presence of various salts. It appears that during the denaturation process, divalent anions are released while divalent cations are fixed by the protein, while it is disorganized and while the environment of its aromatic chromophores becomes more hydrophilic. The pH transition of gelation is shifted 1–2 pH units higher than the transition of denaturation temperature which occurs near the isoelectric point of the native molecule. This shift probably corresponds to the breaking of saline bridges within the protein molecule. Finally, a large effect of divalent cations on the phase diagram indicates that a particular denatured state is attained when these cations are in the denaturation medium.  相似文献   

19.
The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. Tim50 is a major receptor in TIM23 complex, which spans the inner membrane with a single transmembrane segment and exposes a large hydrophilic domain in the intermembrane space. In this study, we expressed and purified the intermembrane space (IMS) domain of human Tim50 (Tim50(IMS)), and investigated its structural characteristics and assembly behaviors. The far-UV CD spectra of Tim50(IMS) in native and denatured states revealed that the protein has a significantly folded secondary structure consisted of α-helixes and β-sheets. Size exclusion chromatography showed that Tim50(IMS) is a monomer. Furthermore, the results showed, by intrinsic fluorescence, ANS binding, fluorescence anisotropy and fluorescence quenching, that Tim50(IMS) forms a compact structure in the range of pH 8.0-5.0; and it is more compact at pH 8.0 than pH 7.0; when pH decreases below 5.0, the protein is gradually denatured.  相似文献   

20.
Modeling the effects of mutations on the denatured states of proteins.   总被引:19,自引:7,他引:12       下载免费PDF全文
We develop a model for the reversible denaturation of proteins and for the effects of single-site mutations on the denatured states. The model is based on short chains of sequences of H (hydrophobic) and P (other) monomers configured as self-avoiding walks on the two-dimensional square lattice. The N (native) state is defined as the unique conformation of lowest contact energy, whereas the D (denatured) state is defined as the collection of all other conformations. With this model we are able to determine the exact partition function, and thus the exact native-denatured equilibrium for various solvent conditions, using the computer to exhaustively enumerate every possible configuration. Previous studies confirm that this model shows many aspects of protein-like behavior. The present study attempts to model how the denatured state (1) depends on the amino acid sequence, and (2) is changed by single-site mutations. The model accounts for two puzzling experimental results: (1) the replacement of a polar residue by a hydrophobic amino acid on the surface of a protein can destabilize a native protein, and (2) the "denaturant slope," m = partial delta G/partial c (where c is the concentration of denaturant--urea, guanidine hydrochloride), can sometimes change by as much as 30% due to a single mutation. The principal conclusion of the present study is that, under strong folding conditions, the denatured conformations that are in equilibrium with the native state are not open random configurations. Instead, they are an ensemble of highly compact conformations with a distribution that depends on the residue sequence and that can be substantially altered by single mutations. Most importantly, we conclude that mutations can exert their dominant effects on protein stability by changing the entropy of folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号