首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the functional roles of the Ca(v)2.3 (alpha(1E)) channel in hippocampal CA1 pyramidal neurons, we studied in vitro synaptic properties and in vivo behaviors of the Ca(v)2.3 gene deficient mice. The Ca(v)2.3 channel mRNA was identified in the hippocampal formation of the wild-type mouse by in situ hybridization. The basic excitatory synaptic transmission and long-term potentiation by theta-burst stimulation were intact in CA1 region of Ca(v)2.3-/- mice. We performed two forms of behavioral tests to examine the hippocampus-dependent function, i.e., emotional and spatial learning tests. The Ca(v)2.3-/- mice were able to establish and maintain fear memories. Although general improvement in the performance of Morris water maze test was seen in Ca(v)2.3-/- mice, they displayed an obvious impairment in the probe test. These results suggest that the Ca(v)2.3 channel plays some role in formation of the accurate spatial memory but not of the fear memory.  相似文献   

2.
3.
Much evidence indicates that calcium channel plays a role in cocaine-induced behavioral responses. We assessed the contributions of Ca(v)2.3 (alpha(1E)) calcium channel to cocaine effects using Ca(v)2.3 knockout mice (Ca(v)2.3-/-). Acute administration of cocaine enhanced the locomotor activity in wild-type mice (Ca(v)2.3+/+), but failed to produce any response in Ca(v)2.3-/- mice. Repeated exposure to cocaine induced the behavioral sensitization and conditioned place preference in both genotypes. Pretreatment with a D1-receptor antagonist, SCH23390, blocked the cocaine-induced place preference in Ca(v)2.3+/+ mice; however, it had no significant effect in Ca(v)2.3-/- mice. Microdialysis and RT-PCR analysis revealed that the levels of extracellular dopamine and dopamine D1 and D2 receptor mRNAs were not altered in Ca(v)2.3-/- mice. These data indicate that Ca(v)2.3 channel contributes to the locomotor-stimulating effect of cocaine, and the deletion of Ca(v)2.3 channel reveals the presence of a novel pathway leading to cocaine rewarding which is insensitive to D1 receptor antagonist.  相似文献   

4.
非洲爪蟾卵母细胞GABAB和GABAc受体介导的电流反应   总被引:4,自引:0,他引:4  
Yang Q  Li ZW  Wei JB 《生理学报》2001,53(4):311-315
实验应用双电极电压箝技术,在具有滤泡膜的非洲爪蟾(Xenopuslaevis)卵母细胞上记录到γ-氨基丁酸(γ-aminobutyricacid,GABA)-激活电流。此GABA-激活电流的特点及有关GABA受体类型的研究和分析如下(1)在35.5%(55/155)的受检细胞外加GABA可引起一慢的浓度依赖性的外向电流。(2)GABAA受体的选择性拮抗剂bicuculline(10  相似文献   

5.
Experimental evidence has shown that the inducible bradykinin (BK) B1 receptor (BKB1-R) subtype is involved in the development of hyperalgesia associated with type 1 diabetes. Selective BKB1-R antagonists inhibited, whereas selective agonists increased the hyperalgesic activity in diabetic mice in thermal nociceptive tests. Here we evaluate the development of diabetic hyperalgesia in a BKB1-R-knockout (KO) genotype compared to wild-type (WT) mice. The BKB1-R-KO mice were backcrossed for 10 generations to C57BL/6 genetic background before use in the experiments. Diabetes was induced by streptozotocin (STZ) and thermal nociception was assessed by the hot plate and tail immersion tests. The hyperalgesia observed in wild type mice was totally absent in the BKB1-R-KO mice. Furthermore, the selective BKB1-R agonist, desArg9BK, significantly increased the hyperalgesic activity in diabetic WT mice but had no effect on nociceptive responses in diabetic BKB1-R-KO mice. Taken together, the results confirm the crucial role of the BKB1-R, upregulated alongside inflammatory diabetes, in the development of diabetes-induced hyperalgesia.  相似文献   

6.
7.
Lecithin:retinol acyltransferase (LRAT) is believed to be the predominant if not the sole enzyme in the body responsible for the physiologic esterification of retinol. We have studied Lrat-deficient (Lrat-/-) mice to gain a better understanding of how these mice take up and store dietary retinoids and to determine whether other enzymes may be responsible for retinol esterification in the body. Although the Lrat-/- mice possess only trace amounts of retinyl esters in liver, lung, and kidney, they possess elevated (by 2-3-fold) concentrations of retinyl esters in adipose tissue compared with wild type mice. These adipose retinyl ester depots are mobilized in times of dietary retinoid insufficiency. We further observed an up-regulation (3-4-fold) in the level of cytosolic retinol-binding protein type III (CRBPIII) in adipose tissue of Lrat-/- mice. Examination by electron microscopy reveals a striking total absence of large lipid-containing droplets that normally store hepatic retinoid within the hepatic stellate cells of Lrat-/- mice. Despite the absence of significant retinyl ester stores and stellate cell lipid droplets, the livers of Lrat-/- mice upon histologic analysis appear normal and show no histological signs of liver fibrosis. Lrat-/- mice absorb dietary retinol primarily as free retinol in chylomicrons; however, retinyl esters are also present within the chylomicron fraction obtained from Lrat-/- mice. The fatty acyl composition of these (chylomicron) retinyl esters suggests that they are synthesized via an acyl-CoA-dependent process suggesting the existence of a physiologically significant acyl-CoA:retinol acyltransferase.  相似文献   

8.
The present study examined the actions of a GABA(B)-receptor agonist, baclofen, on synaptic transmission in rat ventrolateral periaqueductal gray (PAG) neurons of brainstem slices by using whole-cell voltage-clamp recordings. Baclofen (10 microM) induced a slow outward current (peak amplitude: 30.1+/-3.1pA, n=13) at -70mV, which persisted in the presence of tetrodotoxin (0.5 microM) and was diminished in the presence of postsynaptic intracellular K(+)-channel blockers (Cs(+) and TEA) and GDP-beta-S, indicating a direct postsynaptic depression mediated by K(+) channels and G proteins. Baclofen (10 microM) also decreased the frequency of both glutamatergic spontaneous EPSC (by 36+/-7%, n=11) and GABAergic spontaneous IPSC (by 37+/-12%, n=6) without changes in their amplitudes, indicating its presynaptic inhibitions. Taken together, the activation of postsynaptic GABA(B) receptors inhibits ventrolateral PAG neurons directly. At the same time, activating presynaptic GABA(B) receptors on glutamatergic and GABAergic nerve terminals inhibits glutamate and GABA release, respectively. The overall effects might influence an output of ventrolateral PAG neurons that build up the descending pain control system to the spinal dorsal horn.  相似文献   

9.
10.
GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. GABA(B) receptors are promising drug targets for a wide spectrum of psychiatric and neurological disorders. Receptor subtypes exhibit no pharmacological differences and are based on the subunit isoforms GABA(B1a) and GABA(B1b). GABA(B1a) differs from GABA(B1b) in its ectodomain by the presence of a pair of conserved protein binding motifs, the sushi domains (SDs). Previous work showed that selectively GABA(B1a) contributes to heteroreceptors at glutamatergic terminals, whereas both GABA(B1a) and GABA(B1b) contribute to autoreceptors at GABAergic terminals or to postsynaptic receptors. Here, we describe GABA(B1j), a secreted GABA(B1) isoform comprising the two SDs. We show that the two SDs, when expressed as a soluble protein, bind to neuronal membranes with low nanomolar affinity. Soluble SD protein, when added at nanomolar concentrations to dissociated hippocampal neurons or to acute hippocampal slices, impairs the inhibitory effect of GABA(B) heteroreceptors on evoked and spontaneous glutamate release. In contrast, soluble SD protein neither impairs the activity of GABA(B) autoreceptors nor impairs the activity of postsynaptic GABA(B) receptors. We propose that soluble SD protein scavenges an extracellular binding partner that retains GABA(B1a)-containing heteroreceptors in proximity of the presynaptic release machinery. Soluble GABA(B1) isoforms like GABA(B1j) may therefore act as dominant-negative inhibitors of heteroreceptors and control the level of GABA(B)-mediated inhibition at glutamatergic terminals. Of importance for drug discovery, our data also demonstrate that it is possible to selectively impair GABA(B) heteroreceptors by targeting their SDs.  相似文献   

11.
Hair loss and defective T- and B-cell function in mice lacking ORAI1   总被引:2,自引:0,他引:2  
ORAI1 is a pore subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channel. To examine the physiological consequences of ORAI1 deficiency, we generated mice with targeted disruption of the Orai1 gene. The results of immunohistochemical analysis showed that ORAI1 is expressed in lymphocytes, skin, and muscle of wild-type mice and is not expressed in Orai1−/− mice. Orai1−/− mice with the inbred C57BL/6 background showed perinatal lethality, which was overcome by crossing them to outbred ICR mice. Orai1−/− mice were small in size, with eyelid irritation and sporadic hair loss resembling the cyclical alopecia observed in mice with keratinocyte-specific deletion of the Cnb1 gene. T and B cells developed normally in Orai1−/− mice, but B cells showed a substantial decrease in Ca2+ influx and cell proliferation in response to B-cell receptor stimulation. Naïve and differentiated Orai1−/− T cells showed substantial reductions in store-operated Ca2+ entry, CRAC currents, and cytokine production. These features are consistent with the severe combined immunodeficiency and mild extraimmunological symptoms observed in a patient with a missense mutation in human ORAI1 and distinguish the ORAI1-null mice described here from a previously reported Orai1 gene-trap mutant mouse which may be a hypomorph rather than a true null.  相似文献   

12.
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system and it acts at the GABA(A) and GABA(B) receptors. A possible role for the GABA(A) receptors in alcohol action has been derived from in vitro cell models, animal studies and human research. GABA(A) subunit mRNA expression in cell models has suggested that the long form of the gamma2 subunit is essential for ethanol enhanced potentiation of GABA(A) receptors, by phosphorylation of a serine contained within the extra eight amino acids. Several animal studies have demonstrated that alterations in drug and alcohol responses may be caused by amino-acid differences at the GABA(A)alpha6 and GABA(A)gamma2 subunits. An Arg(100)/Glu(100) change at the GABA(A)alpha6 subunit conferring altered binding efficacy of the benzodiazepine inverse agonist Ro 15-4513, was found between the AT (alcohol tolerance) and ANT (alcohol non-tolerance) rats. Several loci related to alcohol withdrawal on mouse chromosome 11 which corresponds to the region containing four GABA(A) subunit (beta2, alpha6, alpha1 and gamma2) genes on human chromosome 5q33-34, were also identified. Gene knockout studies of the role of GABA(A)alpha6 and GABA(A)gamma2 subunit genes in mice have demonstrated an essential role in the modulation of other GABA(A) subunit expression and the efficacy of benzodiazepine binding. Absence of the GABA(A)gamma2 subunit gene has more severe effects with many of the mice dying shortly after birth. Disappointingly few studies have examined the effects of response to alcohol in these gene knockout mice. Human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have a role in the development of alcohol dependence, although their contributions may vary between ethnic group and phenotype. In summary, in vitro cell, animal and human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have an important role in alcohol related phenotypes (300 words).  相似文献   

13.
Development of depressive-like state in mice of the C57BL/6J strain is accompanied by a considerable decrease in the immune response. A selective activation of presynaptic 5-HT1A-receptors (8-OH-DPAT, 0.1 mg/kg, for 15 min before immunization) markedly increased the immune response tested with the number of IgM-antibody-forming cells, and stimulation of postsynaptic 5-HT1A-receptors (8-OH-DPAT, 1.0 mg/kg, for 30 min before immunization twice) produced an immune suppression in control animals (mice without experience of victories and defeats). On the other hand, there were no changes in the immune response level following 8-OH-DPAT administration (0.1 and 1.0 mg/kg) in mice with depressive-like state. The role of pre- and postsynaptic 5-HT1A-receptors in immunomidulation in mice with depressive-like behaviour is discussed.  相似文献   

14.
In mammalian cells, damaged bases in DNA are corrected by the base excision repair pathway which is divided into two distinct pathways depending on the length of the resynthesized patch, replacement of one nucleotide for short-patch repair, and resynthesis of several nucleotides for long-patch repair. The involvement of poly(ADP-ribose) polymerase-1 (PARP-1) in both pathways has been investigated by using PARP-1-deficient cell extracts to repair single abasic sites derived from uracil or 8-oxoguanine located in a double-stranded circular plasmid. For both lesions, PARP-1-deficient cell extracts were about half as efficient as wild-type cells at the polymerization step of the short-patch repair synthesis, but were highly inefficient at the long-patch repair. We provided evidence that PARP-1 constitutively interacts with DNA polymerase beta. Using cell-free extracts from mouse embryonic cells deficient in DNA polymerase beta, we demonstrated that DNA polymerase beta is involved in the repair of uracil-derived AP sites via both the short and the long-patch repair pathways. When both PARP-1 and DNA polymerase beta were absent, the two repair pathways were dramatically affected, indicating that base excision repair was highly inefficient. These results show that PARP-1 is an active player in DNA base excision repair.  相似文献   

15.
Striatal adenosine A(2A) receptors (A(2A)Rs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D(2) receptors (D(2)Rs). A(2A)Rs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1) receptors (A(1)Rs). It has been hypothesized that postsynaptic A(2A)R antagonists should be useful in Parkinson's disease, while presynaptic A(2A)R antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2A)R antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2A)R-D(2)R and A(1)R-A(2A)R heteromers to determine possible differences in the affinity of these compounds for different A(2A)R heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2A)R when co-expressed with D(2)R than with A(1)R. KW-6002 showed the best relative affinity for A(2A)R co-expressed with D(2)R than co-expressed with A(1)R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, respectively.  相似文献   

16.
African trypanosomes of the Trypanosoma brucei species are extra-cellular parasites that cause human African trypanosomiasis (HAT) as well as infections in game animals and livestock. Trypanosomes are known to evade the immune response of their mammalian host by continuous antigenic variation of their surface coat. Here, we aim to demonstrate that in addition, trypanosomes (i) cause the loss of various B cell populations, (ii) disable the hosts' capacity to raise a long-lasting specific protective anti-parasite antibody response, and (iii) abrogate vaccine-induced protective response to a non-related human pathogen such as Bordetella pertussis. Using a mouse model for T. brucei, various B cell populations were analyzed by FACS at different time points of infection. The results show that during early onset of a T. brucei infection, spleen remodeling results in the rapid loss of the IgM(+) marginal zone (IgM(+)MZ) B cell population characterized as B220(+)IgM(High)IgD(Int) CD21(High)CD23(Low)CD1d(+)CD138(-). These cells, when isolated during the first peak of infection, stained positive for Annexin V and had increased caspase-3 enzyme activity. Elevated caspase-3 mRNA levels coincided with decreased mRNA levels of the anti-apoptotic Bcl-2 protein and BAFF receptor (BAFF-R), indicating the onset of apoptosis. Moreover, affected B cells became unresponsive to stimulation by BCR cross-linking with anti-IgM Fab fragments. In vivo, infection-induced loss of IgM(+) B cells coincided with the disappearance of protective variant-specific T-independent IgM responses, rendering the host rapidly susceptible to re-challenge with previously encountered parasites. Finally, using the well-established human diphtheria, tetanus, and B. pertussis (DTPa) vaccination model in mice, we show that T. brucei infections abrogate vaccine-induced protective responses to a non-related pathogen such as B. pertussis. Infections with T. brucei parasites result in the rapid loss of T-cell independent IgM(+)MZ B cells that are normally functioning as the primary immune barrier against blood-borne pathogens. In addition, ongoing trypanosome infections results in the rapid loss of B cell responsiveness and prevent the induction of protective memory responses. Finally, trypanosome infections disable the host's capacity to recall vaccine-induced memory responses against non-related pathogens. In particular, these last results call for detailed studies of the effect of HAT on memory recall responses in humans, prior to the planning of any mass vaccination campaign in HAT endemic areas.  相似文献   

17.
Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9-15 months) transgenic APP/PS1 mice and old (19-25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABA(A) receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A) receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A) receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABA(A) receptor alpha1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A) receptor alpha1 subunit and improvement of cognitive functions by long term GABA(A) receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABA(A) receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.  相似文献   

18.
Diminished lung function, indicated by a low forced expiratory volume in one second (FEV1), and short physical stature, predict early mortality from all causes, including cardiovascular, among smokers and never smokers. The basis for these associations is unclear, and, it is not known if there is a pulmonary morphological component to the relationship between low FEV1 and early death in a general population. Some apolipoprotein E genotypes also predict atherosclerosis and early mortality. These considerations led us to examine the Apoe(tm1Unc) (Apoe) mouse, in which the apolipoprotein E gene is deleted, and that develops dyslipidemia, atherosclerosis at an early age, and has a shorter life span than the founder wild-type (wt) strain. We asked if Apoe mice have a morphological or functional pulmonary phenotype. We measured the size, number, and surface area of pulmonary gas-exchange units (alveoli) and mechanical properties of the lung. Compared with wt mice, Apoe mice had: 1) diminished developmental alveologenesis, 2) increased airway resistance in early adulthood, 3) high lung volume and high dynamic and static compliance in later adulthood, 4) more rapid loss of lung recoil with age, and 5) were less long than wt mice. These findings in mice indicate the association of a low FEV1 with early death in humans may have developmental, and accelerated ageing, related pulmonary components, and that dietary, genetic, or dietary and genetic influences, on lipid metabolism may be an upstream cause of inflammation and oxidative stress, currently considered to be major risk factors for COPD.  相似文献   

19.
20.
The insulin receptor substrate (IRS) proteins are key mediators of insulin and insulinlike growth factor 1 (IGF-1) signaling. Protein tyrosine phosphatase (PTP)-1B dephosphorylates and inactivates both insulin and IGF-1 receptors. IRS2-deficient mice present altered hepatic insulin signaling and β-cell failure and develop type 2–like diabetes. In addition, IRS2 deficiency leads to developmental defects in the nervous system. IGF1 gene mutations cause syndromic sensorineural hearing loss in humans and mice. However, the involvement of IRS2 and PTP1B, two IGF-1 downstream signaling mediators, in hearing onset and loss has not been studied. Our objective was to study the hearing function and cochlear morphology of Irs2-null mice and the impact of PTP1B deficiency. We have studied the auditory brainstem responses and the cochlear morphology of systemic Irs2−/−Ptpn1+/+, Irs2+/+Ptpn1−/−and Irs2−/−Ptpn1−/− mice at different postnatal ages. The results indicated that Irs2−/−Ptpn1+/+ mice present a profound congenital sensorineural deafness before the onset of diabetes and altered cochlear morphology with hypoinnervation of the cochlear ganglion and aberrant stria vascularis, compared with wild-type mice. Simultaneous PTP1B deficiency in Irs2−/−Ptpn1−/− mice delays the onset of deafness. We show for the first time that IRS2 is essential for hearing and that PTP1B inhibition may be useful for treating deafness associated with hyperglycemia and type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号