首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The constitutive expressor of pathogenesis-related genes 5 (CPR5) plays a role in pathogen defence responses, programmed cell death, cell wall biogenesis, seed generation and senescence regulation in plants. Here, we investigated the functional characteristics of CPR5 to long-term heat stress in Arabidopsis with different genotypes: wild type (WT), cpr5 mutant and cpr5/CPR5 complementary transgenic plant. The cpr5 mutant showed increased susceptibility to long-term heat stress, displaying significant decreases in hypocotyl elongation, seedling and inflorescence survival, membrane integrity and photosystem II activity (Fv/Fm) during heat stress. However, the thermotolerance was recovered when cpr5 mutant was transformed with a CPR5 gene. H2O2 accumulation and lipid peroxidation were lower in cpr5/CPR5 plants and WT than in cpr5 mutants after exposure to 36?°C for 5?days. The alleviated oxidative damage was associated with increased activities of superoxide dismutase, catalase, and ascorbate peroxidase. Furthermore, the induced expression of HSP17.6A-CI, HSP101 and HSP70B under long-term heat stress was more substantial in cpr5/CPR5 plants and WT than in cpr5 mutants. These findings suggest that CPR5 plays an important role in thermotolerance of Arabidopsis by regulating the activities of antioxidant enzymes and the expressions of heat shock protein genes.  相似文献   

3.
S A Bowling  A Guo  H Cao  A S Gordon  D F Klessig    X Dong 《The Plant cell》1994,6(12):1845-1857
Systemic acquired resistance (SAR) is a nonspecific defense response in plants that is associated with an increase in the endogenous level of salicylic acid (SA) and elevated expression of pathogenesis-related (PR) genes. To identify mutants involved in the regulation of PR genes and the onset of SAR, we transformed Arabidopsis with a reporter gene containing the promoter of a beta-1,3-glucanase-encoding PR gene (BGL2) and the coding region of beta-glucuronidase (GUS). The resulting transgenic line (BGL2-GUS) was mutagenized, and the M2 progeny were scored for constitutive GUS activity. We report the characterization of one mutant, cpr1 (constitutive expressor of PR genes), that was identified in this screen and shown by RNA gel blot analysis also to have elevated expression of the endogenous PR genes BGL2, PR-1, and PR-5. Genetic analyses indicated that the phenotype conferred by cpr1 is caused by a single, recessive nuclear mutation and is suppressed in plants producing a bacterial salicylate hydroxylase, which inactivates SA. Furthermore, biochemical analysis showed that the endogenous level of SA is elevated in the mutant. Finally, the cpr1 plants were found to be resistant to the fungal pathogen Peronospora parasitica NOCO2 and the bacterial pathogen Pseudomonas syringae pv maculicola ES4326, which are virulent in wild-type BGL2-GUS plants. Because the cpr1 mutation is recessive and associated with an elevated endogenous level of SA, we propose that the CPR1 gene product acts upstream of SA as a negative regulator of SAR.  相似文献   

4.
The Arabidopsis mutant hypersenescence 1 (hys1), that is allelic to constitutive expresser of pathogenesis-related genes 5 (cpr5), displays phenotypes related to glucose signalling and defence responses. In the present study, it is shown that the hys1 mutation boosts the inhibitory effects of glucose upon the greening of seedlings and reduces the antagonistic activities of ethylene and cytokinin toward this inhibition. Neither the glucose content nor the sensitivities to ethylene, cytokinin, and abscisic acid were found to differ between wild-type and hys1 seedlings. However, disruption of the gene encoding hexokinase1 (HXK1), which acts as a glucose sensor, partially suppressed the glucose hypersensitive phenotype of the hys1 mutant. These results thus suggest that the hys1 mutation promotes a process associated with the HXK1-mediated glucose response during greening. By contrast, additional hys1 phenotypes, including an increase in salicylic acid (SA), production of abnormal trichomes, and early senescence, were not suppressed by the loss of HXK1. Surprisingly, the hxk1 and hys1 mutations acted synergistically towards an increased SA accumulation. Hence, HYS1/CPR5 appears to be a versatile protein that modulates both the HXK1-mediated glucose response and various HXK1-indepndent processes that are involved in growth control. A possible role for HYS1/CPR5 as a component of the networks that regulate growth control is discussed.  相似文献   

5.
J D Clarke  Y Liu  D F Klessig    X Dong 《The Plant cell》1998,10(4):557-569
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense.  相似文献   

6.
Plants often respond to pathogens by sacrificing cells at the infection site. This type of programmed cell death is mimicked by the constitutive pathogene response5 (cpr5) mutant in Arabidopsis in the absence of pathogens, suggesting a role for CPR5 in programmed cell death control. The analysis of the cellular phenotypes of two T-DNA-tagged cpr5 alleles revealed an additional role for CPR5 in the regulation of endoreduplication and cell division. In cpr5 mutant trichomes, endoreduplication cycles stop after two rounds instead of four, and trichome cells have fewer branches than normal. Eventually, cpr5 trichomes die, the nucleus disintegrates, and the cell collapses. Similarly, leaf growth stops earlier than in wild-type, and, frequently, regions displaying spontaneous cell death are observed. The cloning of the CPR5 gene revealed a novel putative transmembrane protein with a cytosolic domain containing a nuclear-targeting sequence. The dual role of CPR5 in cell proliferation and cell death control suggests a regulatory link between these two processes.  相似文献   

7.
In many plant-pathogen interactions, resistance is associated with the synthesis and accumulation of salicylic acid (SA) and pathogenesis-related (PR) proteins. At least two general classes of mutants with altered resistance to pathogen attack have been identified in Arabidopsis. One class exhibits increased susceptibility to pathogen infection; the other class exhibits enhanced resistance to pathogens. In an attempt to identify mutations in resistance-associated loci, we screened a population of T-DNA tagged Arabidopsis thaliana ecotype Wassilewskija (Ws) for mutants showing constitutive expression of the PR-1 gene (cep). A mutant was isolated and shown to constitutively express PR-1, PR-2, and PR-5 genes. This constitutive phenotype segregated as a single recessive trait in the Ws genetic background. The mutant also had elevated levels of SA, which are responsible for the cep phenotype. The cep mutant spontaneously formed hypersensitive response (HR)-like lesions on the leaves and cotyledons and also exhibited enhanced resistance to virulent bacterial and fungal pathogens. Genetic analyses of segregating progeny from outcrosses to other ecotypes unexpectedly revealed that alterations in more than one gene condition the constitutive expression of PR genes in the original mutant. One of the mutations, designated cpr20, maps to the lower arm of chromosome 4 and is required for the cep phenotype. Another mutation, which has been termed cpr21, maps to chromosome 1 and is often, but not always, associated with this phenotype. The recessive nature of the cep trait suggests that the CPR20 and CPR21 proteins may act as negative regulators in the disease resistance signal transduction pathway.  相似文献   

8.
To investigate the resistance signaling pathways activated by pathogen infection, we previously identified the Arabidopsis thaliana mutant constitutive expresser of PR genes22 (cpr22), which displays constitutive activation of multiple defense responses. Here, we identify the cpr22 mutation as a 3-kb deletion that fuses two cyclic nucleotide-gated ion channel (ATCNGC)-encoding genes, ATCNGC11 and ATCNGC12, to generate a novel chimeric gene, ATCNGC11/12. Genetic, molecular, and complementation analyses suggest that ATCNGC11/12, as well as ATCNGC11 and ATCNGC12, form functional cAMP-activated ATCNGCs and that the phenotype conferred by cpr22 is attributable to the expression of ATCNGC11/12. However, because overexpression of ATCNGC12, but not ATCNGC11, suppressed the phenotype conferred by cpr22, the development of this phenotype appears to be regulated by the ratio between ATCNGC11/12 and ATCNGC12. Analysis of knockout lines revealed that both ATCNGC11 and ATCNGC12 are positive mediators of resistance against an avirulent biotype of Hyaloperonospora parasitica. Through epistatic analyses, cpr22-mediated enhanced resistance to pathogens was found to require NDR1-dependent and EDS1/PAD4-dependent pathways. In striking contrast, none of these pathways was required for cpr22-induced salicylic acid accumulation or PR-1 gene expression. These results demonstrate that NDR1, EDS1, and PAD4 mediate other resistance signaling function(s) in addition to salicylic acid and pathogenesis-related protein accumulation. Moreover, the requirement for both NDR1-dependent and EDS1/PAD4-dependent pathways for cpr22-mediated resistance suggests that these pathways are cross-regulated.  相似文献   

9.
Arabidopsis gain‐of‐resistance mutants, which show HR‐like lesion formation and SAR‐like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense‐response gene expression. The cpr30‐conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE‐SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30‐conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30‐conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30‐GFP fusion protein in the cytoplasm and nucleus. As an F‐box protein, CPR30 could interact with multiple Arabidopsis‐SKP1‐like (ASK) proteins in vivo. Co‐localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA‐dependent and SA‐independent defense signaling, most likely through the ubiquitin‐proteasome pathway in Arabidopsis.  相似文献   

10.
11.
Disease resistance (R) proteins, as central regulators of plant immunity, are tightly regulated for effective defense responses and to prevent constitutive defense activation under non-pathogenic conditions. Here we report the identification of an F-box protein CPR1/CPR30 as a negative regulator of an R protein SNC1 likely through SCF (Skp1-cullin-F-box) mediated protein degradation. The cpr1-2 (cpr30-1) loss-of-function mutant has constitutive defense responses, and it interacts synergistically with a gain-of function mutant snc1-1 and a bon1-1 mutant where SNC1 is upregulated. The loss of SNC1 function suppresses the mutant phenotypes of cpr1-2 and cpr1-2 bon1-1, while overexpression of CPR1 rescues mutant phenotypes of both bon1-1 and snc1-1. Furthermore, the amount of SNC1 protein is upregulated in the cpr1-2 mutant and down-regulated when CPR1 is overexpressed. The regulation of SNC1 by CPR1 is dependent on the 26S proteosome as a protease inhibitor MG132 stabilizes SNC1 and reverses the effect of CPR1 on SNC1. Interestingly, CPR1 is induced after infection of both virulent and avirulent pathogens similarly to the other negative defense regulator BON1. Thus, this study reveals a new mechanism in R protein regulation likely through protein degradation and suggests negative regulation as a critical component in fine control of plant immunity.  相似文献   

12.
13.
Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B'γ (B'γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b'γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b'γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b'γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b'γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b'γ leaves. We suggest that the specific B'γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.  相似文献   

14.
15.
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane‐bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor‐interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi‐fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1‐1 and etr1‐2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.  相似文献   

16.
Borghi M  Rus A  Salt DE 《PloS one》2011,6(10):e26360
Here, we demonstrate that the reduction in leaf K(+) observed in a mutant previously identified in an ionomic screen of fast neutron mutagenized Arabidopsis thaliana is caused by a loss-of-function allele of CPR5, which we name cpr5-3. This observation establishes low leaf K(+) as a new phenotype for loss-of-function alleles of CPR5. We investigate the factors affecting this low leaf K(+) in cpr5 using double mutants defective in salicylic acid (SA) and jasmonic acid (JA) signalling, and by gene expression analysis of various channels and transporters. Reciprocal grafting between cpr5 and Col-0 was used to determine the relative importance of the shoot and root in causing the low leaf K(+) phenotype of cpr5. Our data show that loss-of-function of CPR5 in shoots primarily determines the low leaf K(+) phenotype of cpr5, though the roots also contribute to a lesser degree. The low leaf K(+) phenotype of cpr5 is independent of the elevated SA and JA known to occur in cpr5. In cpr5 expression of genes encoding various Cyclic Nucleotide Gated Channels (CNGCs) are uniquely elevated in leaves. Further, expression of HAK5, encoding the high affinity K(+) uptake transporter, is reduced in roots of cpr5 grown with high or low K(+) supply. We suggest a model in which low leaf K(+) in cpr5 is driven primarily by enhanced shoot-to-root K(+) export caused by a constitutive activation of the expression of various CNGCs. This activation may enhance K(+) efflux, either indirectly via enhanced cytosolic Ca(2+) and/or directly by increased K(+) transport activity. Enhanced shoot-to-root K(+) export may also cause the reduced expression of HAK5 observed in roots of cpr5, leading to a reduction in uptake of K(+). All ionomic data presented is publically available at www.ionomicshub.org.  相似文献   

17.
Gao G  Zhang S  Wang C  Yang X  Wang Y  Su X  Du J  Yang C 《PloS one》2011,6(4):e19406
The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.  相似文献   

18.

Background  

The Arabidopsis thaliana CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene has been previously implicated in disease resistance, cell proliferation, cell death, and sugar sensing, and encodes a putative membrane protein of unknown biochemical function. Trichome development is also affected in cpr5 plants, which have leaf trichomes that are reduced in size and branch number.  相似文献   

19.
The systemic acquired resistance (SAR) response in Arabidopsis is characterized by the accumulation of salicylic acid (SA), expression of the pathogenesis-related (PR) genes, and enhanced resistance to virulent bacterial and oomycete pathogens. The cpr (constitutive expressor of PR genes) mutants express all three SAR phenotypes. In addition, cpr5 and cpr6 induce expression of PDF1.2, a defense-related gene associated with activation of the jasmonate/ethylene-mediated resistance pathways. cpr5 also forms spontaneous lesions. In contrast, the eds1 (enhanced disease susceptibility) mutation abolishes race-specific resistance conferred by a major subclass of resistance (R) gene products in response to avirulent pathogens. eds1 plants also exhibit increased susceptibility to virulent pathogens. Epistasis experiments were designed to explore the relationship between the cpr- and EDS1-mediated resistance pathways. We found that a null eds1 mutation suppresses the disease resistance phenotypes of both cpr1 and cpr6. In contrast, eds1 only partially suppresses resistance in cpr5, leading us to conclude that cpr5 expresses both EDS1-dependent and EDS1-independent components of plant disease resistance. Although eds1 does not prevent lesion formation on cpr5 leaves, it alters their appearance and reduces their spread. This phenotypic difference is associated with increased pathogen colonization of cpr5 eds1 plants compared to cpr5. The data allow us to place EDS1 as a necessary downstream component of cpr1- and cpr6-mediated responses, but suggest a more complex relationship between EDS1 and cpr5 in plant defense.  相似文献   

20.
We used the chimeric Arabidopsis cyclic nucleotide-gated ion channel AtCNGC11/12 to conduct a structure-function study of plant cyclic nucleotide-gated ion channels (CNGCs). AtCNGC11/12 induces multiple pathogen resistance responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22). A genetic screen for mutants that suppress cpr22-conferred phenotypes identified an intragenic mutant, #73, which has a glutamate to lysine substitution (E519K) at the beginning of the eighth beta-sheet of the cyclic nucleotide-binding domain in AtCNGC11/12. The #73 mutant is morphologically identical to wild-type plants and has lost cpr22-related phenotypes including spontaneous cell death and enhanced pathogen resistance. Heterologous expression analysis using a K(+)-uptake-deficient yeast mutant revealed that this Glu519 is important for AtCNGC11/12 channel function, proving that the occurrence of cpr22 phenotypes requires active channel function of AtCNGC11/12. Additionally, Glu519 was also found to be important for the function of the wild-type channel AtCNGC12. Computational structural modeling and in vitro cAMP-binding assays suggest that Glu519 is a key residue for the structural stability of AtCNGCs and contributes to the interaction of the cyclic nucleotide-binding domain and the C-linker domain, rather than the binding of cAMP. Furthermore, a mutation in the alpha-subunit of the human cone receptor CNGA3 that causes total color blindness aligned well to the position of Glu519 in AtCNGC11/12. This suggests that AtCNGC11/12 suppressors could be a useful tool for discovering important residues not only for plant CNGCs but also for CNGCs in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号