首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.  相似文献   

2.
Actinobacteria and Firmicutes comprise a group of highly divergent prokaryotes known as Gram-positive bacteria, which are ancestral to Gram-negative bacteria. Comparative genomics is revealing that, though plant virulence genes are frequently located on plasmids or in laterally acquired gene clusters, they are rarely shared with Gram-negative bacterial plant pathogens and among Gram-positive genera. Gram-positive bacterial pathogens utilize a variety of virulence strategies to invade their plant hosts, including the production of phytotoxins to allow intracellular and intercellular replication, production of cytokinins to generate gall tissues for invasion, secretion of proteins to induce cankers and the utilization and manipulation of sap-feeding insects for introduction into the phloem sieve cells. Functional analysis of novel virulence genes utilized by Actinobacteria and Firmicutes is revealing how these ancient prokaryotes manipulate plant, and sometimes insect, metabolic processes for their own benefit.  相似文献   

3.
珠江口水体浮游细菌种群多样性空间分布特征   总被引:1,自引:0,他引:1  
孙富林  王友绍 《生态科学》2011,30(6):569-574
为认识珠江口水体浮游细菌的多样性分布规律,运用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)和多维尺度分析(MDS)的方法,研究了春季珠江口十个站位表底水层浮游细菌种群16SrRNA基因多样性特征。研究结果表明,珠江口浮游细菌种群具有丰富的基因多样性;不同站位细菌群落结构和优势种群变化显著:大多数站位表底层细菌群落结构比较相似,河口外站位(A12,A14和C5),表底层细菌群落结构差异性较大:多样性分析表明A14,B6和C5站位底层细菌多样性大于表层。遗传发育分析表明,序列归属于变形细菌(Proteobacteria),酸杆菌(Acidobacteria),蓝细菌(Cyanobacteria),厚壁细菌(Firmicutes)和放线菌(Actinobacteria)。变形细菌(Proteobacteria)种类最多,从河口内淡水区到河口外海水区都有大量分布,是珠江口水域占优势的菌群;同时也检测到种类丰富的放线菌(Actinobacteria)的存在,也是珠江口水域的优势菌群。  相似文献   

4.
The phylogenetic relationships of 12 aerobic dichloromethane-degrading bacteria that implement different C1-assimilation pathways was determined based on 16S ribosomal RNA sequences and DNA-DNA hybridization data. The restricted facultative methylotroph "Methylophilus leisingerii" DM11 with the ribulose monophosphate pathway was found to belong to the genus Methylophilus cluster of the beta subdivision of the phylogenetic kingdom Proteobacteria. The facultative methylotroph Methylorhabdus multivorans DM13 was assigned to a separate branch of the alpha-2 group of Proteobacteria. Paracoccus methylutens DM12, which utilizes C1-compounds via the Calvin cycle was found to belong to the alpha-3 group of the Proteobacteria (more precisely, to the genus Paracoccus cluster). Thus, phylogenetic analysis confirmed the taxonomic status of these recently characterized bacteria. According to the degree of DNA homology, several novel strains of methylotrophic bacteria were divided into three genotypic groups within the alpha-2 group of the Proteobacteria. Genotypic group 1, comprising strains DM1, DM3, and DM5 through DM9, and genotypic group 3, comprising strain DM10, were phylogenetically close to the methylotrophic bacteria of the genus Methylopila, whereas genotypic group 2 (strain DM4) was close to bacteria of the genus Methylobacterium. The genotypic groups obviously represent distinct taxa of methylotrophic bacteria, whose status should be confirmed by phenotypic analysis.  相似文献   

5.
Effects of the chlorinated insecticide Kepone on the ecology of Chesapeake Bay and James River bacteria were studied. Kepone-resistant bacteria present in a given environment were found to reflect the degree of fecal and/or high organic pollution of the sampling sites, based on total numbers and generic composition of the populations of Kepone-resistant bacteria. The presence of Kepone-resistant bacteria was found to be correlated (alpha = 0.01) with total coliforms, fecal coliforms, and total aerobic viable heterotrophic bacteria, but not with Kepone concentration, since Kepone-resistant bacteria were present in locations where Kepone could not be detected by the analytical methods used in this study. Only gram-negative bacteria, predominantly Pseudomonas, Vibrio, and Aeromonas spp., were found to be resistant to >/=10 mug of Kepone per ml. Gram-positive bacteria, i.e., Bacillus and Corynebacterium spp., were generally sensitive to >/=0.1 mug of Kepone per ml. From results of cluster analysis of taxonomic data, we determined that characteristics of Kepone-resistant bacteria included: resistance to pesticides and heavy metals; degradation of oil; positive oxidase and catalase reactions; and nitrate reduction. From results of the ecological and taxonomic analyses, we conclude that Kepone resistance in estuarine bacteria is due to the physicochemical composition of the gram-negative cell wall and not prior exposure to Kepone. Therefore, the presence of Kepone-resistant bacteria cannot serve as an indicator of Kepone contamination in the aquatic environment where gram-negative bacteria are predominant.  相似文献   

6.
可产生铁载体的春兰根内生细菌多样性   总被引:5,自引:0,他引:5  
摘要:【目的】了解可产生铁载体的春兰根内生细菌的多样性,以便筛选到高效的植物促生细菌。【方法】采用CAS检测法测定了189株春兰根内生细菌产生铁载体的能力,并结合16S rRNA基因系统发育分析对可产铁载体的春兰根内生细菌多样性进行了研究。【结果】从189株春兰内生细菌中筛选到47株可产生铁载体的细菌,占菌株总数的24.9%。16S rRNA基因系统发育分析结果表明,47株细菌分属于4个系统发育类群(Alphaproteobacteria,Betaproteobacteria,Firmicutes,Actinobacteria),17个属的31个种。其中放线菌门为最优势类群(42.6%),芽孢杆菌属(Bacillus)和贪噬菌属(Variovorax)为优势菌属,且贪噬菌属为高产铁载体的主体菌属。另外有2个菌株可能代表两个不同属的新物种。【结论】春兰根中可产生铁载体的内生细菌具有丰富的多样性。  相似文献   

7.
目的分析新疆哈萨克族正常血压人群和高血压人群肠道菌群中拟杆菌属、梭菌属的结构特征,探讨两人群肠道两菌属的差异。方法使用16S DNA-PCR-DGGE技术比较哈萨克族正常血压人群和高血压人群肠道菌群中两菌属结构的差异,将差异条带克隆、测序,与GenBank数据库提供的序列进行比对,确定细菌种类。结果哈萨克族高血压人群肠道梭菌属的16S DNA V3区DGGE图谱中出现一条优势带,其在2组人群中出现的频率经分析后差异具有统计学意义(P0.05)。基因序列在GenBank数据库上用Blast程序进行比对,确定为Uncul-tured bacterium clone nbw1009b01c1。结论这种细菌可能会影响哈萨克族高血压的发生和发展。  相似文献   

8.
The intestinal tract houses one of the richest and most complex microbial populations on the planet, and plays a critical role in health and a wide range of diseases. Limited studies using new sequencing technologies in horses are available. The objective of this study was to characterize the fecal microbiome of healthy horses and to compare the fecal microbiome of healthy horses to that of horses with undifferentiated colitis. A total of 195,748 sequences obtained from 6 healthy horses and 10 horses affected by undifferentiated colitis were analyzed. Firmicutes predominated (68%) among healthy horses followed by Bacteroidetes (14%) and Proteobacteria (10%). In contrast, Bacteroidetes (40%) was the most abundant phylum among horses with colitis, followed by Firmicutes (30%) and Proteobacteria (18%). Healthy horses had a significantly higher relative abundance of Actinobacteria and Spirochaetes while horses with colitis had significantly more Fusobacteria. Members of the Clostridia class were more abundant in healthy horses. Members of the Lachnospiraceae family were the most frequently shared among healthy individuals. The species richness reported here indicates the complexity of the equine intestinal microbiome. The predominance of Clostridia demonstrates the importance of this group of bacteria in healthy horses. The marked differences in the microbiome between healthy horses and horses with colitis indicate that colitis may be a disease of gut dysbiosis, rather than one that occurs simply through overgrowth of an individual pathogen.  相似文献   

9.
Using information from several metabolic databases, we have built our own metabolic database containing 434 pathways and 1157 different enzymes. We have used this information to construct a dendrogram that demonstrates the metabolic similarities between 282 species. The resulting species distribution and the clusters defined in the tree show a certain taxonomic congruence, especially in recent relationships between species. This dendrogram is another representation of the tree of life, based on metabolism that may complement the trees constructed by other methods. For example, the metabolic dissimilarity we demonstrate between Symbiobacterium thermophilum (previously defined as Actinobacteria) and the other Actinobacteria species, and the metabolic similarity between S. thermophilum and Clostridia, combined with other evidence, suggest that S. thermophilum may be re-classified as Firmicutes, Clostridia.  相似文献   

10.
11.
With the ultimate aim of developing bioremediation technology that use the optimum bacterial community for each pollutant, we performed polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis and identified communities of culturable bacteria in HgCl(2)- and trichloroethylene (TCE)-contaminated soil microcosms. PCR-DGGE band patterns were similar at 0 and 1 ppm HgCl(2), but changes in specific bands occurred at 10 ppm HgCl(2). Band patterns appearing at 10 and 100 ppm TCE were very different from those at 0 ppm. Phylogenetic analysis showed four bacterial groups in the HgCl(2)-contaminatied cultures: Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. Most high-density bands, decreased-density bands, and common bands were classified into the phyla Proteobacteria, Actinobacteria, and Firmicutes, respectively; the effects of HgCl(2) on culturable bacteria appeared to differ among phyla. Duganella violaceinigra [98.4% similarity to DNA Data Bank of Japan (DDBJ) strain], Lysobacter koreensis (98.2%), and Bacillus panaciterrae (98.6%) were identified as bacteria specific to HgCl(2)-contaminated soils. Bacteria specific to TCE-contaminated soils were distributed into three phyla (Firmicutes, Proteobacteria, and Actinobacteria), but there was no clear relationship between phylum and TCE effects on culturable bacteria. Paenibacillus kobensis (97.3%), Paenibacillus curdlanolyticus (96.3%), Paenibacillus wynnii (99.8%), and Sphingomonas herbicidovorans (99.4%) were identified as bacteria specific to TCE-contaminated soils. These bacteria may be involved in pollutant degradation.  相似文献   

12.
本文对 11例出土于山东省鲁中南地区保存较好的周 -汉代颅骨进行测量研究。在颅、面部测量特征的比较上 ,这批头骨与鲁北地区同时代头骨特征类似 ,都属于东亚蒙古人种类型。与周邻地区古代人群的聚类分析与主成分分析结果表明 ,鲁中南周 -汉代组人群与黄河流域古代类群的亲缘关系比与华南组的更接近 ,这组人群与西日本弥生人接近的程度明显大于与绳文人接近的程度。本研究支持在现代日本人的起源中有源自中国大陆特别是华北东部地区的因素。  相似文献   

13.
The phylogenetic position of the archaebacteria and the place of eukaryotes in the history of life remain a question of debate. Recent studies based on some protein-sequence data have obtained unusual phylogenies for these organisms. We therefore collected the protein sequences that were available with representatives from each of the major forms of life: the gram-negative bacteria, gram-positive bacteria, archaebacteria, and eukaryotes. Monophyletic, unrooted phylogenies based on these sequence data show that seven of 24 proteins yield a significant gram-positive-archaebacteria clade/gram-negative- eukaryotic clade. The phylogenies for these seven proteins cannot be explained by the traditional three-way split of the eukaryotes, archaebacteria, and eubacteria. Nine of the 24 proteins yield the traditional gram-positive-gram-negative clade/archaebacteria-eukaryotic clade. The remaining eight proteins give phylogenies that cannot be statistically distinguished. These results support the hypothesis of a chimeric origin for the eukaryotic cell nucleus formed from the fusion of an archaebacteria and a gram-negative bacteria.   相似文献   

14.
Aerobic bacterial cultures of the tympanic cavity of the middle ear were performed in eight eastern box turtles (Terrapene carolina carolina) with aural abscesses and 15 eastern box turtles without aural abscesses (controls) that were admitted to The Wildlife Center of Virginia, Virginia, USA during 2003. Twenty-two bacterial isolates were identified from 17 turtles including 10 gram-negative and 12 gram-positive bacteria. Ten of 15 control animals had bacterial growth, resulting in identification of 13 bacteria, including six gram-negative and seven gram-positive agents. Seven of eight turtles with aural abscesses had bacterial growth, and 10 isolates were identified, including four gram-negative and six gram-positive organisms. The most frequently isolated bacteria from control animals were Micrococcus luteus (n = 3) and Pantoea agglomerans (n = 2). Morganella morganii (n = 2) was the only species isolated from the tympanic cavity of more than one turtle with aural abscesses. Staphylococcus epidermidis (n = 2) was the only species isolated from both groups. A trend toward greater bacterial growth in tympanic cavities of affected turtles compared with turtles without aural abscesses was noted. No single bacterial agent was responsible for aural abscesses in free-ranging eastern box turtles in this study, an observation consistent with the hypothesis that aerobic bacteria are not primary pathogens, but secondary opportunistic invaders of environmental origin.  相似文献   

15.
Effects of the chlorinated insecticide Kepone on the ecology of Chesapeake Bay and James River bacteria were studied. Kepone-resistant bacteria present in a given environment were found to reflect the degree of fecal and/or high organic pollution of the sampling sites, based on total numbers and generic composition of the populations of Kepone-resistant bacteria. The presence of Kepone-resistant bacteria was found to be correlated (α = 0.01) with total coliforms, fecal coliforms, and total aerobic viable heterotrophic bacteria, but not with Kepone concentration, since Kepone-resistant bacteria were present in locations where Kepone could not be detected by the analytical methods used in this study. Only gram-negative bacteria, predominantly Pseudomonas, Vibrio, and Aeromonas spp., were found to be resistant to ≥10 μg of Kepone per ml. Gram-positive bacteria, i.e., Bacillus and Corynebacterium spp., were generally sensitive to ≥0.1 μg of Kepone per ml. From results of cluster analysis of taxonomic data, we determined that characteristics of Kepone-resistant bacteria included: resistance to pesticides and heavy metals; degradation of oil; positive oxidase and catalase reactions; and nitrate reduction. From results of the ecological and taxonomic analyses, we conclude that Kepone resistance in estuarine bacteria is due to the physicochemical composition of the gram-negative cell wall and not prior exposure to Kepone. Therefore, the presence of Kepone-resistant bacteria cannot serve as an indicator of Kepone contamination in the aquatic environment where gram-negative bacteria are predominant.  相似文献   

16.
17.
The phylogenetic relationships of 12 aerobic dichloromethane-degrading bacteria that implement different C1-assimilation pathways was determined based on 16S ribosomal RNA sequences and DNA–DNA hybridization data. The restricted facultative methylotroph Methylophilus leisingerii DM11 with the ribulose monophosphate pathway was found to belong to the genus Methylophilus cluster of the beta subclass of Proteobacteria. The facultative methylotroph Methylorhabdus multivorans DM13 was assigned to a separate branch of the alpha-2 group of Proteobacteria. Paracoccus methylutens DM12, which utilizes C1-compounds via the Calvin cycle, was found to belong to the alpha-3 group of Proteobacteria (more precisely, to the genus Paracoccus cluster). Thus, phylogenetic analysis confirmed the taxonomic status of these recently characterized bacteria. According to the degree of DNA homology, several novel strains of methylotrophic bacteria were divided into three genotypic groups within the alpha-2 group of the Proteobacteria. Genotypic group 1, comprising strains DM1, DM3, and DM5 through DM9, and genotypic group 3, comprising strain DM10, were phylogenetically close to the methylotrophic bacteria of the genus Methylopila, whereas genotypic group 2 (strain DM4) was close to bacteria of the genus Methylobacterium. The genotypic groups obviously represent distinct taxa of methylotrophic bacteria, whose status should be confirmed by phenotypic analysis.  相似文献   

18.
One hundred and forty bacteria isolated from Antarctic seawater samples were examined for their ability to inhibit the growth of indigenous isolates and their sensitivity to antibacterial activity expressed by one another. On the basis of 16S rRNA gene sequencing and analysis, bacterial isolates were assigned to five phylogenetically different taxa, Actinobacteria, alpha and gamma subclasses of Proteobacteria, Bacillaceae, and Bacteroidetes. Twenty-one isolates (15%), predominantly Actinobacteria, exhibited antagonistic properties against marine bacteria of Antarctic origin. Members of Bacteroidetes and Firmicutes did not show any inhibitory activity. Differences were observed among inhibition patterns of single isolates, suggesting that their activity was more likely strain-specific rather than dependent on phylogenetic affiliation. A novel analysis based on network theory confirmed these results, showing that the structure of this population is probably robust to perturbations, but also that it depends strongly on the most active strains. The determination of plasmid incidence in the bacterial strains investigated revealed that there was no correlation between their presence and the antagonistic activity. The data presented here provide evidence for the antagonistic interactions within bacterial strains inhabiting Antarctic seawater and suggest the potential exploitation of Antarctic bacteria as a novel source of antibiotics.  相似文献   

19.
The diversity of culturable bacteria associated with sandy intertidal sediments from the coastal regions of the Chinese Antarctic Zhongshan Station on the Larsemann Hills (Princess Elizabeth Land, East Antarctica) was investigated. A total of 65 aerobic heterotrophic bacterial strains were isolated at 4°C. Microscopy and 16S rRNA gene sequence analysis indicated that the isolates were dominated by Gram-negative bacteria, while only 16 Gram-positive strains were isolated. The bacterial isolates fell in five phylogenetic groups: Alpha- and Gammaproteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Based on phylogenetic trees, all the 65 isolates were sorted into 29 main clusters, corresponding to at least 29 different genera. Based on sequence analysis (<98% sequence similarity), the Antarctic isolates belonged to at least 37 different bacterial species, and 14 of the 37 bacterial species (37.8%) represented potentially novel taxa. These results indicated a high culturable diversity within the bacterial community of the Antarctic sandy intertidal sediments.  相似文献   

20.
Cyclophilins are folding helper enzymes belonging to the class of peptidyl-prolyl cis-trans isomerases (PPIases; EC 5.2.1.8) that catalyze the cis-trans isomerization of peptidyl-prolyl bonds in proteins. They are ubiquitous proteins present in almost all living organisms analyzed to date, with extremely rare exceptions. Few cyclophilins have been described in Actinobacteria, except for three reported in the genus Streptomyces and another one in Mycobacterium tuberculosis. In this study, we performed a complete phylogenetic analysis of all Actinobacteria cyclophilins available in sequence databases and new Streptomyces cyclophilin genes sequenced in our laboratory. Phylogenetic analyses of cyclophilins recovered six highly supported groups of paralogy. Streptomyces appears as the bacteria having the highest cyclophilin diversity, harboring proteins from four groups. The first group was named "A" and is made up of highly conserved cytosolic proteins of approximately 18 kDa present in all Actinobacteria. The second group, "B," includes cytosolic proteins widely distributed throughout the genus Streptomyces and closely related to eukaryotic cyclophilins. The third group, "M" cyclophilins, consists of high molecular mass cyclophilins ( approximately 30 kDa) that contain putative membrane binding domains and would constitute the only membrane cyclophilins described to date in bacteria. The fourth group, named "C" cyclophilins, is made up of proteins of approximately 18 kDa that are orthologous to Gram-negative proteobacteria cyclophilins. Ancestral character reconstruction under parsimony was used to identify shared-derived (and likely functionally important) amino acid residues of each paralogue. Southern and Western blot experiments were performed to determine the taxonomic distribution of the different cyclophilins in Actinobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号